ORACLE

Public

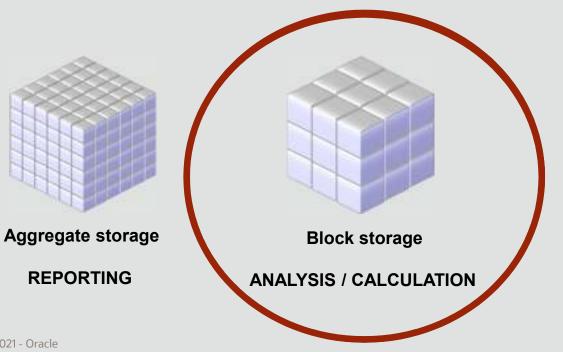
What is Essbase BSO?

Key Concepts for Basic Understanding ... in a 30-minute presentation!

Jane Story July 2021

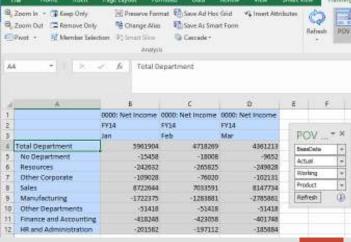
Agenda - What is Essbase BSO?

- 1 What is the Magic of Essbase? Quick Review.
- 2 What are Dimensions and Members? The Basics for understanding BSO.
- 3 What is a Block? Dense & Spare: the link to everything BSO.
- 4 How is Data Stored in BSO? Blocks, blocks and more blocks!
- 5 Where is Data Stored in BSO? Ind/Pag files
- 6 Types of Blocks. All Blocks are the same size but what makes them different?
- 7 Where to find BSO Cube Statistics? And how do they relate to what we know?


1. What is the Magic of Essbase? Quick Review

BSO or ASO?

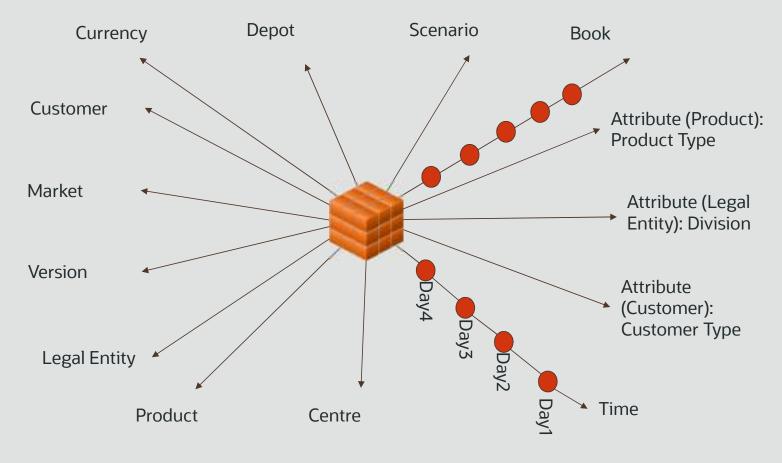
Extended Spread Sheet Database


Aggregate Storage Option: Large outlines, primarily aggregation Block Storage Option: Small outlines, complex analysis/calculation

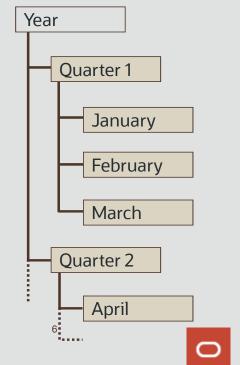
Lightbolt	166	182
Thunderball	131	149

Jan

Feb


Essbase Terminology

One or more Essbase cubes to one BSO Essbase application ASO Essbase **applications**: one ASO cube to one ASO Essbase application ASO Cube BSO Cube BSO Cube ASO Cube **BSO** Cube Oracle-© 2021 - Oracle


BSO Essbase applications:

Dimensions & Members

Hierarchies and structures

Dimensions for Plan1 (BSO)					
Name	Туре	Declared Members	Stored Members		
Account	Dense	266	206		
Period	Dense	26	15		
HSP_View	Sparse	4	3		
Year	Sparse	10	10		
Scenario	Sparse	15	10		
Version	Sparse	161	157		
Entity	Sparse	126	64		
Product :	Sparse	26	21		

2. What are Dimensions and Members?

The Basics for understanding BSO

What are Dimensions?

The Basics for Understanding BSO

Dimensions for Plan1 (BSO)

Name	Туре	Declared Members	Stored Members
Account	Dense	266	206
Period	Dense	25	15
HSP_View	Sparse	4	3
Year	Sparse	10	10
Scenario	Sparse	15	10
Version	Sparse	161	157
Entity	Sparse	126	64
Product	Sparse	26	21

- A dimension is a view-point on the data.
- Members relating to that dimension/view-point are created within the dimension as a hierarchy.
- Members can be stored, dynamic or navigational aids (label only) or shared to create reporting hierarchies.
- <u>Declared members</u> is the total of ALL members in the dimension (+ Dynamic Time Series for Period).
- <u>Stored members</u> does not include dynamic calc, label only or shared members.
- Each <u>standard</u> dimension in a BSO cube is either DENSE or SPARSE.

3. What is a Block?

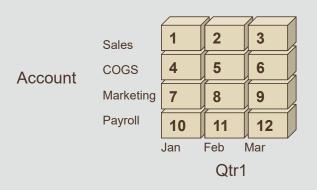
Dense and Sparse: The Link to Everything BSO

The Link to Everything BSO

Name	Туре	Declared Members	Stored Members
Account	Dense	266	206
Period	Dense	25	15
HSP_View	Sparse	4	3
Year	Sparse	10	10
Scenario	Sparse	15	10
Version	Sparse	161	157
Entity	Sparse	126	64
Product	Sparse	26	21

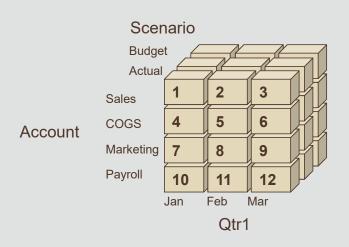
- The data storage unit in a BSO cube is a BLOCK.
- DENSE & SPARSE determines how big each block is and how many blocks could exist.
- Each standard dimension in a BSO cube can either be DENSE or SPARSE.
- The decision whether a dimension is DENSE or SPARSE is made at design stage.
- DENSE & SPARSE determines how the data is stored in a BSO cube.
- The size and number of BLOCKS, at a high level, will determine how the BSO cube executes operations (retrieves, calculations, reports etc.) and the performance thereof.

And how it affects the anatomy of a BLOCK


Dimensions for Plan1 (BSO)				
Name	Туре	Declared Members	Stored Members	
Account	Dense	266	206	
Period	Dense	25	15	
HSP_View	Sparse	4	3	
Year	Sparse	10	10	
Scenario	Sparse	15	10	
Version	Sparse	161	157	
Entity	Sparse	126	64	
Product	Sparse	26	21	

- The data storage unit in a BSO cube is a BLOCK.
- The number of stored members in the DENSE dimensions determines the SIZE of the block.
- The number of stored SPARSE combinations determines the potential number of blocks.
- A new block is created every time data is loaded for that SPARSE combination.
- Let's see how that works ...

Dense


Calculating Block size

- The number of CELLS in a BLOCK are calculated by multiplying together the STORED members in the DENSE dimensions:
- 3 Time * 4 Accounts = 12 cells

Dense

Calculating Block size

- The number of CELLS in a BLOCK are calculated by multiplying together the STORED members in the DENSE dimensions:
- 3 Time * 4 Accounts = 12 cells
- If you add a 3rd dimension, the # cells increases:
- 3 * 4 * 3 Scenario = 36 cells

Dense

Calculating Block size

Name	Туре	Declared Members	Stored Members
Account	Dense	266	206
Period	Dense	25	15
HSP_View	Sparse	4	3
Year	Sparse	10	10
Scenario	Sparse	15	10
Version	Sparse	161	157
Entity	Sparse	126	64
Product	Sparse	26	21

Essbase BSO Cube Statistics		
	Plan1	
Dense	2	
Sparse	6	
Attribute	0	
Block Size in Cells	3,090	
Block Size in KB	24	

To Calculate Block Size in Bytes, first calculate the number of cells by multiplying the stored member count of all dense dimensions:

• = 206 * 15 = 3090 cells

Then multiply by 8 (8 bytes per cell)

- * 8 bytes per cell = 24,720 bytes
- / 1024 to calculate KB
- = 24KB
- Optimal block size is 8-200kb

Oracle-© 2021 - Oracle

And how it affects the number of blocks

Name	Туре	Declared Members	Stored Members
Account	Dense	266	206
Period	Dense	25	15
HSP_View	Sparse	4	3
Year	Sparse	10	10
Scenario	Sparse	15	10
Version	Sparse	161	157
Entity	Sparse	126	64
Product	Sparse	26	21

- Sparse Dimensions determine the <u>potential</u> number of blocks
- A new block is only created:
 - When data is loaded
 - With a sparse calculation
 - With a DataCopy command
 - Use of CreateBlock functions
 - Some member formula
- Blocks are created as a <u>combination</u> of all the sparse dimensions

How is the <u>number</u> of blocks determined?

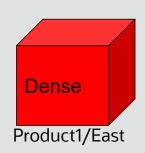
Name	Туре	Declared Members	Stored Members
Account	Dense	266	206
Period	Dense	25	15
HSP_View	Sparse	4	3
Year	Sparse	10	10
Scenario	Sparse	15	10
Version	Sparse	161	157
Entity	Sparse	126	64
Product	Sparse	26	21

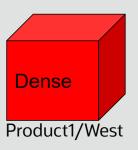
Essbase BSO Cube Statistics		
	Plan1	
Level 0 Blocks	2,991	
Upper Level Blocks	1,336	
Total Blocks	4,327	

- The <u>potential</u> number of blocks is determined by the stored sparse combinations i.e.
- Potential number of blocks

$$= 63,302,400$$

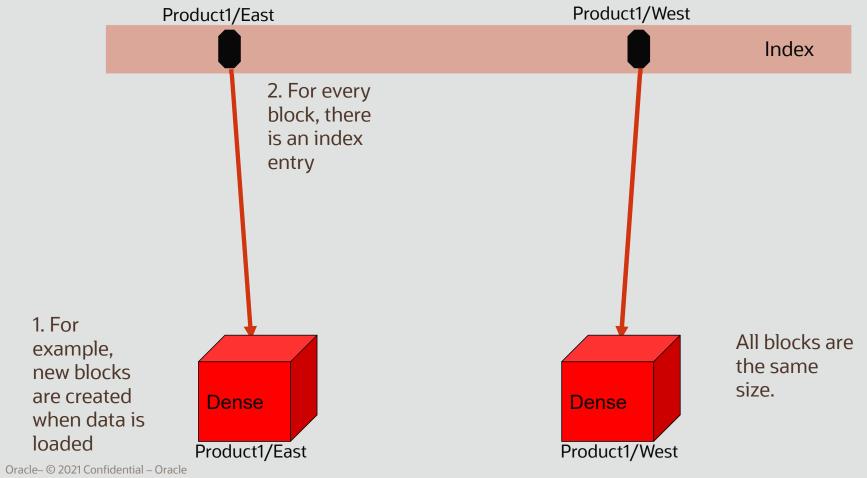
- As you can see, this number gets quite large quite quickly.
- BUT, a new block is ONLY created where data exists so the <u>actual</u> number of blocks is much lower.


4. How is Data Stored in BSO?

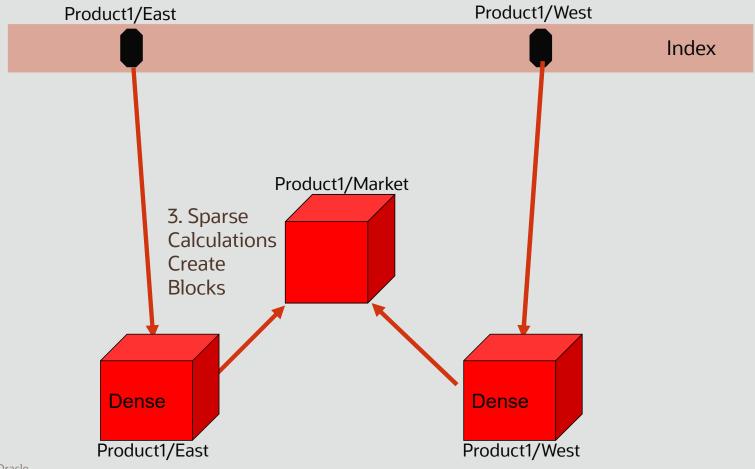

Blocks, blocks, and more blocks!

Blocks are created as a combination of Sparse dimensions

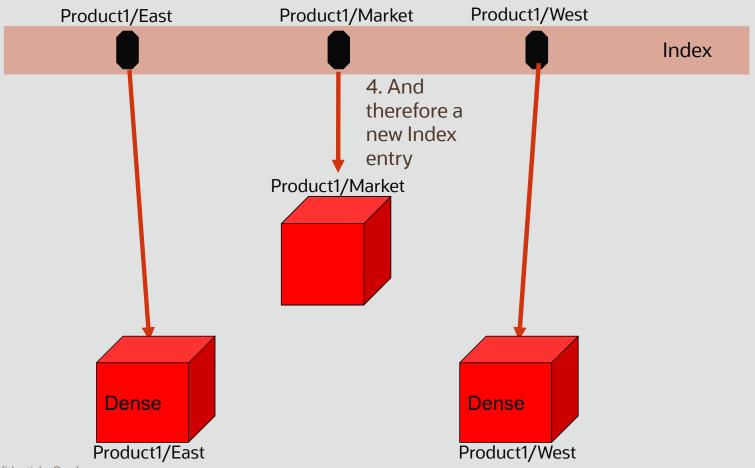
1. For example, new blocks are created when data is loaded



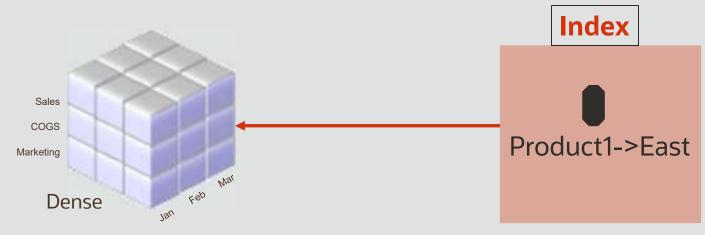
All blocks are the same size.



Blocks are created as a combination of Sparse dimensions



Blocks are created as a combination of Sparse dimensions



Blocks are created as a combination of Sparse dimensions

The Link to Everything Essbase

Product1->East Block

Every Block containing <u>dense</u> dimension references has an **Index** Point containing <u>sparse</u> dimension references.

The Link to Everything Essbase

- The number of stored members in a <u>dense</u> dimension determines the <u>size</u> of the block.
- The number of stored members in a <u>sparse</u> dimension determines the <u>potential number</u> of blocks, and an <u>index</u> entry is created for each sparse combination.
- The number of each <u>stored</u> member in each dimension is used in these calculations.
- Every block is the same size.
- Dense member data is in EVERY block.
- Sparse member data is only in the blocks for those sparse combinations.

Name	Туре	Declared Members	Stored Members
Account	Dense	266	206
Period	Dense	25	15
HSP_View	Sparse	4	3
Year	Sparse	10	10
Scenario	Sparse	15	10
Version	Sparse	161	157
Entity	Sparse	126	64
Product	Sparse	26	21

The Link to Everything Essbase

Dense dimensions determine the size of the block

Sparse dimensions in combination determine the number of blocks

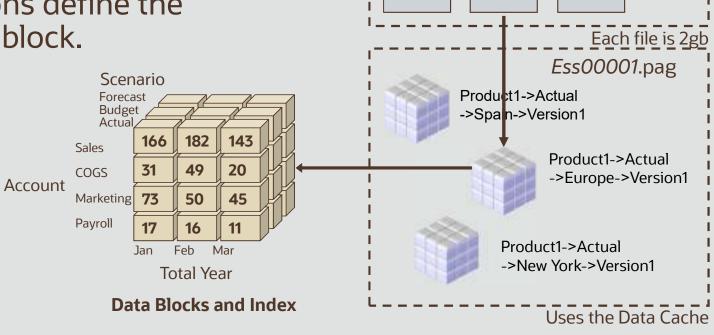
Product1->Actual ->Spain->Version1

Product1->Actual ->Europe->Version1

Product1->Actual ->New York->Version1

Product1->Actual ->USA->Version1

Dense is in every block. All Blocks are the same size!


5. Where is Data Stored in BSO? Ind/Pag Files

Where is Data Stored in Essbase BSO?

Ind/Pag files

Dense dimensions define data blocks cell location.

Sparse dimensions define the index, i.e., which block.

Uses the Index Cache

Ess00001.ind

6. Types of BlocksAll blocks are the same size but what makes them different?

Types of Blocks

Dimensions for Plan1 (BSO)				
Name	Туре	Declared Members	Stored Members	
Account	Dense	266	206	
Period	Dense	25	15	
HSP_View	Sparse	4	3	
Year	Sparse	10	10	
Scenario	Sparse	15	10	
Version	Sparse	161	157	
Entity	Sparse	126	64	
Product	Sparse	26	21	

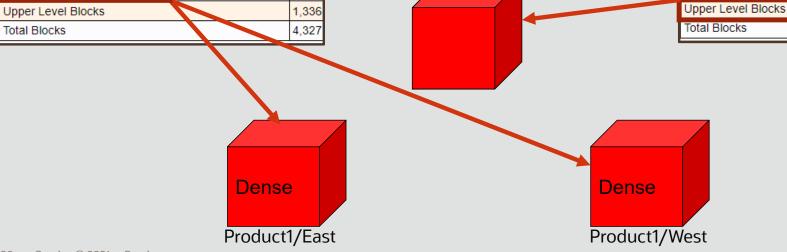
Essbase BSO Cube Statistics		
	Plan1	
Level 0 Blocks	2,991	
Upper Level Blocks	1,336	
Total Blocks	4,327	

- A Level 0 block is where ALL the sparse members in the sparse combination are at level0 in its dimension.
- An upper level block is where at least one sparse member is not level 0.
- Input blocks are where data is loaded, whether level0 or upper level.

Types of Blocks

Essbase BSO Cube Statistics

Level 0 Blocks


Total Blocks

Product1/Market

Level 0 Blocks

Plan1

2,991

7. Where to find BSO information?

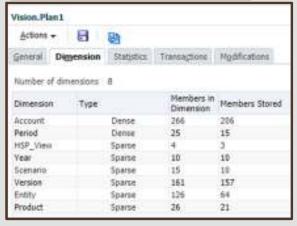
Activity Report

Activity Report

BSO cube statistics by cube

	Plant	Plan2	Plan3
Total Dimensions	8	7	7
Standard Dimensions	8	7	7
Dense	2	2	/2
Sparse	6	5	.5
Attribute	0	0	0
Block Size in Cells	3,090	15	15
Block Size in KB	24	0	- (
Level 0 Blocks	2,991	0	- 0
Upper Level Blocks	1,336	0	(
Total Blocks	4,327	0	. (
Upper Level Blocks Percentage	31%	0	- (
Cells in Million	13	0	- 0
Block Density	6%	0	
Average Clustering Ratio	69%	100%	100%
Page File Sizes in MB	7	0	(
Data Cache Setting in MB	500	500	500
Index File Size in MB	7	0	
Index Cache Setting in MB	50	50	50
Hourglass/Modified Hourglass Deviations on Dense	0	1	- 8
Hourglass Deviations on Sparse	3	1	- 1
Modified Hourglass Deviations on Aggregating Sparse	12	7	7

Statistics show:


- No. blocks
- Block size
- Level 0 Blocks
- Upper Level
- Block Density
- Index File Size
- Page File Size

Activity Report

Dimensions by Cube

Name	Type	Declared Members	Stored Members
Account	Dense	266	206
Period	Dense	25	15
HSP_View	Sparse	4	3
Year	Sparse	10	10
Scenario	Sparse	15	10
Version	Sparse	161	157
Entity	Sparse	126	64
Product	Sparse	26	21

Dimensions show:

- Number of Standard Dense/Sparse Dimensions
- Number of Attribute Dimensions (if applicable)
- Number of Declared Members
- Number of Stored Members
- Other Member Property Statistics (not shown here)

ORACLE

Confidential – © 2019 Oracle