What’s In A Word?
Lexical Analysis For PL/SQL And SQL

Charles Wetherell
Oracle Corporation

21 April 2016

Abstract

A friend wrote a PL/SQL source code analyzer. He was surprised when
his tool worked on return 'Y'; but failed on return'Y';. Is the blank-free
version legal PL/SQL? Does his tool have a bug? The answer lies in the lexical
structure of PL/SQL and sQL. This note explains lexical analysis and provides
an answer to our friend’s question.

Words

Ye Highlands and ye Lowlands
Oh, where hae ye been?
They hae slain
the Earl o’Moray
And laid him on the green.

The Bonnie Earl o’Moray

A friend builds PL/SQL programming tools as a business. While testing a source
code analyzer, he was puzzled by an anomaly. He had written the statement

return'Y';

in a PL/SQL program (probably the missing space after return was a typo). He passed
the program to his source code analysis tool and the tool failed! When he rewrote the
statement as

return 'Y';

the tool worked exactly as expected. By contrast, the PL/SQL compiler happily ac-
cepted both forms. Our friend wondered if he had discovered a bug in the PL/SQL
compiler. Or perhaps he just didn’t understand the rules of PL/SQL completely.

For any language, each new utterance must be broken into meaningful pieces.
Each language has its own rules and regulations. If these are unknown or unclear,
the analysis can be a challenge. Mistakes are the basis of puns and ludicrous misun-
derstandings. The writer Sylvia Wright loved the song The Bonnie Farl o’Moray as
a child but only realized when she was an adult that the last line of the verse shown
above was And laid him on the green, not And Lady Mondegreen. Natural language
errors like this are now known as mondegreens.

A PL/SQL program or a SQL statement is an utterance, commonly a text preserved
in a file. For these texts, just as for English or Hindi or Mandarin, the first step is
to find the words. How is this done? What are the specific rules for PL/SQL and
SQL? Most programmers never worry about the rules; they write sensible programs
and don’t notice the odd cases. But for folks who write tools to create, analyze, or
manage PL/SQL and SQL, the details do matter. Mondegreens are to be avoided. The

knowledge may also help those who set coding standards, write elegant code, or are
curious about everything to do with the two languages.

Lexical Principles

Linguistic theories generally
regard human languages as
consisting of two parts: a
lexicon, essentially a catalogue
of a language’s words (its
wordstock); and a grammar, a
system of rules which allow for
the combination of those words
into meaningful sentences.

Wikipedia

Artificial languages have an advantage over natural languages: they are specifically
designed for easy decoding. PL/sSQL and SQL are no exceptions. These languages share
their rules for finding words. Even better, they share several principles for the word
finding rules.

Before going further, it is important to note that there is no meaning ascribed
to words at this stage. The job of finding words begins and ends with the words
themselves. Whether they are arranged properly, whether they make sense when
combined, whether they are useful in any way is outside consideration. Only the
words themselves matter.

Programming languages use a term of art for their words: the token. Language
tools break text expressed as a sequence of characters into a sequence of tokens so
no two tokens overlap and so every character is accounted for. Here are the lexical
principles for PL/SQL and SQL; other programming languages are similar.

Category Each token has a category. For example, a token may be an identifier,
a numeric literal, a single character operator, white space, and so on. Natural
languages commonly only have the categories word, punctuation, and white space
although they might include a few more like number.

Start Pattern The lexicon defines a family of start patterns. For example, an iden-
tifier must start with an alphabetic character. A string literal may start with
several different patterns, but those patterns all include the single quote char-
acter '. Each start pattern identifies a particular category; several distinct
patterns may all identify the same category.

© 00~ U WN -

Listing 3.1: The Lexical Algorithm

— Input is a file with text
— Output is an array of tokens

function LexIt(text)

TheTokens = []

while text is not empty
T := find start of token category
error if T is null
Token = find end of category T
error if Token is null
push Token on end of TheTokens

return TheTokens

end

Ordering The start patterns are ordered so that the first that might apply is always
taken. This ensures that /* is seen as the token that starts a comment and not
as the pair of a divide operator / followed by a multiply operator *.

Greedy Each token category is greedy. Once a start pattern has been found, the
token continues until no more characters belonging to its continuation can be
found. Identifiers continue so long as letters, digits, and a few special characters
are seen. A string literal that starts with a single quote ' continues until a
second single quote is seen. A single character operator has, by definition, no
continuation and terminates as soon as its start pattern is found.

Using identifier as a token category makes some PL/SQL and SQL purists anxious
(myself included when I am in maximum purity mode) because there is another notion
of identifier used in the semantic analysis of these languages. Any anxiety will be
relieved by a discussion later on.

The Lexical Algorithm

The principles are fine, but how are they applied in practice? Two ingredients are
needed: a description of each token category along with its start and continuation
information and an algorithm to do the lexical analysis. Listing provides the
algorithm in some imaginary programming language.

Imagine a demon standing on the first brick of a long road, each brick inscribed
with a character. The demon looks down at the brick under his feet and then may
have to look ahead as far as two more bricks. Once he has seen these starting bricks,
the demon determines the category of the token begining underfoot. There may be no

[y

Listing 3.2: Example PL/sSQL And Token String

begin

en?flmptyDumpty(>abc’ || to_char(1.0));
Category Text
Identifier begin
Whitespace CR
Whitespace U
Whitespace U
Identifier HumptyDumpty
SingleCharOperator (
StringLiteral 'abc'
Whitespace U
DoubleCharOperator ||
Whitespace U
Identifier to_char
SingleCharOperator — (
NumericLiteral 1.0

SingleCharOperator)
SingleCharOperator)

SingleCharOperator
Whitespace CR
Identifier end
SingleCharOperator
Whitespace EQF

Figure 1: Tokens From The PL/SQL Block

legal category; in that case, the demon announces an error. Now the demon walks until
the next brick in front of him can no longer continue the token under construction.
At that moment, he announces that the characters from where he started to where
he is standing form a token. After the demon takes one step forward onto the next
character, he starts the process again. It is also possible that the continuation does
not end properly and, once again, the demon may announce an error. When the
demon comes to the end of the road and the end of a token at the same time, the
analysis is complete and the demon retires. Readers who know something about finite
state machines will recognize this as an informal description of such a machine.

How might this algorithm work on a small PL/SQL program? Consider the example
of Listing [3.2] and the token list from Figure [I, The first surprise is that the word
begin is an identifier. Isn’t it supposed to a reserved word or keyword? When parsing
and semantic analysis come along, they may give identifiers more detailed roles, but
for the purpose of breaking text into tokens, if it looks like an identifier, it is an
identifier.

Secondly, every token has a text associated. That text is what the demon found
when walking along. Surprisingly, the demon found three instances of whitespace in
a row: CR (that is, carriage return), a blank ., and another . Why weren’t those
amalgamated into one token? Because there is no need; the analysis is simpler if each
whitespace item is just a character by itself. The same reasoning applies to the end
of file character EOF that ends the token list.

The token list observes the lexical principles.

The first token starts at the beginning of the text.
The last token ends at the end of the text.

Every text character appears in a token.

No character appears in more than one token.
The tokens appear in text order.

Categories

What are the categories of tokens and how are they recognized? On line [J of Listing
3.1} there is a magical command find start of token category. This command
knows how all the sQL and PL/SQL tokens start. Figure[2/encapsulates this knowledge.

There are some restrictions on the way the rules are applied.

If the character under observation is not in the table, a lexical error has occurred.
The rules must be applied in the order they are listed. The first item that
matches determines the category. For example, nq' is the beginning of a string
literal. It is not an identifier nq followed by the beginning of a simple string
literal .

The characters of a category start must appear exactly as they are in the table.
There can be no gaps. This is why white space in its several flavors is also a

lexical category.

The notation digit is shorthand for the set of characters that include all the
decimal digits. The category which starts .digit stands for .0, .1, .2, and so
on.

Similarly, the notation alpha stands for all the alphabetic characters.

Because PL/SQL may be found in a WITH clause of a SQL statement, lexical
analysis of both languages must be prepared to deal with all of these categories.
The sQL Reference Manual syntax diagram for numeric literals allows a leading
+ or - as part of the literal. This is an error. A sign character in that position is
actually a single character operator that applies to the literal value that follows
it. Because a negative integer literal can be used in some places where the
original sQL developers did not want to specify full expressions, this tiny “hack”
was added to the specification of numeric literals. It is easier to understand
lexical analysis if the optional sign is treated on its own as an operator.

Start Token Category

U Whitespace

TAB Whitespace

CR Whitespace

LF Whitespace

EOF Whitespace

" QuotedIdentifier

' Stringliteral

n' Stringliteral

N' Stringliteral

q' StringlLiteral

Q' StringLiteral

nq' Stringliteral

nQ' Stringliteral

Nq' Stringliteral

NQ' StringlLiteral

/*+ CommentHint

/* Comment

-+ EOLHint

- EOLComment

1= <> DoubleOperator

~=, 7= DoubleOperator

<=, >= DoubleOperator

>= DoubleOperator

1= DoubleOperator

& > DoubleOperator

|l DoubleOperator

=> DoubleOperator
DoubleOperator

*% DoubleOperator

*/ EndHint

.digit NumericLiteral

digit NumericLiteral

+, -, %/, ., ,, () SingleOperator

Q = <> ;,[]1,{,} SingleOperator

8% 70 N SingleOperator

alphabetic Identifier

Figure 2: Token Start Combinations
This table is reasonably complete but should not be regarded as definitive.

« Notice that */ is a category start. But it is only used to end a hint, not a com-
ment. When it appears as the end of the comment, it is part of the continuation

for the comment and not a token on its own.
e A comma , is a single operator token and so a comma is a token start. The two

commas in the table are in two different type fonts exactly to make this point.

The token starts are in hand and each category needs a continuation. For white
space, double operators, and single operators, the category start is also just the token
so there is no need to go further. The other tokens are more or less complicated.

Identifier An identifier continues from its start character so long as there are alpha-
betic characters, decimal digits, and the special characters $, _, and #. The first
character that is not one of these ends the identifier.

Quoted Identifier A quoted identifier runs from its start to the next double quote

character ". Neither a null character nor an end of line may appear in a quoted
identifier. This means that (almost) any character sequence can form a quoted

identifier exzcept one which includes a double quote.
Numeric Literal The sQL Reference Manual provides an elaborate and correct di-

agram except for the beginning + or -. Once again, only the characters from a

numeric literal are allowed; anything else is an error including extraneous blanks.
Simple String Literal A string literal that begins with a single quote ', n', or N'
continues until the next single quote is found.
Q String Literal A string literal that begins with one of the Q or NQ sequences has
a complicated continuation. The first character (call it ¢) after the single quote
' is used as a new terminator. The string literal runs until the sequence c' is

seen. This allows these literals to include the single quote as part of the literal.
Comment A comment continues until the sequence */ is seen. Nothing inside the

comment matters except these characters. This means comments which start

this way cannot be nested.
EOL Comment An EOL comment is one terminated by an end of line character.

That character is not part of the comment itself. An end of file also ends this
kind of comment as it is regarded as an implicit end of line. Notice that any
other lexical item may be embedded in an EOL comment and will be ignored
whether well formed or in error.

The two hint categories are more complicated because the material inside the token
has structure itself. Exactly the same lexical analysis that is needed for the original
text is needed within the hint. There are two ways to think about how to analyze a
hint.

o Find the entire text that is the token for the hint. In other words, treat the
hint as a comment of the same sort as the hint. Once the text of the comment
has been discovered, break it into three parts: the hint start token, the hint end
token, and the text of the interior. Restart an independent lexical analysis on
the interior text and “patch” those tokens between the hint start and hint end

tokens.
e Once a begin hint token has been seen, change the lexical category rules slightly.

In particular, disallow any comment start tokens inside a hint. This has the same
effect as the first scheme but it creates the tokens as they are seen; it does not
require two passes over the interior of the hint.

Hints appear in SQL but because SQL statements may be embedded in PL/SQL pro-
grams, both languages must be prepared to analyze them. Also, SQL purportedly bars
some constructs in hints, but probably it is best to think of analyzing the hint text into
tokens without any restrictions and to let later processing stages decide whether the
hint was legal. In practice, the lexical analyzer is likely to combine features of these
two techniques depending on how the tokens are consumed after they are discovered.

The Answer

After all of this, the answer to the original question is clear. The statement
return 'Y';
is converted into the tokens

Identifier = return
Whitespace =
Stringliteral = 'Y'
SingleOperator = ;

The blank between return and 'Y' stops the continuation of the identifier return. In
return'Y';

it is the single quote ' that stops the identifier continuation. Because the later phases
of the PL/sQL compiler essentially ignore whitespace, this sequence is also legal

Identifier = return
StringlLiteral = 'Y'
SingleOperator = ;

Practice

In any language, one of the first steps is to list the vocabulary. For sQL and PL/SQL,
the vocabulary is the list of tokens. Unfortunately, there does not seem to be any

complete token listing in the Oracle reference manuals. I have culled these descriptions
from several manual sections.

Operators The PL/SQL manual has a reasonably complete list in a section titled
Delimiters. The SQL reference manual does not seem to have such a list and
so the various operators need to be inferred from the syntax diagrams. Notice
that what we are calling an operator might be called punctuation in a natural
language. Identifiers (like PRIOR) that function as operators do not fall in this
category.

Whitespace Neither SQL nor PL/SQL provides a very clear account of white space
although probably an experienced programmer can understand what is intended.

String Literals The sQL manual has a reasonable syntax diagram for all forms of
string literals.

Numeric Literals The sQL manual has a reasonable syntax diagram for numeric
literals. As noted before, the leading + or - sign is a mistake. The signs should
be interpreted as unary operators before the literal.

Identifiers The sQL manual does not have an obvious definition of an identifier. The
PL/SQL manual has a section Identifiers that describes the lexical categories
Identifier and QuotedIdentifier accurately enough.

Comments The PL/SQL reference manual has a reasonable definition of both kinds
of comments; the SQL manual also has a definition.

Hints The sQL reference manual describes the internal syntax allowed in hints, but it
does not make clear that the interior of a hint is a kind of recursive environment
so far as finding tokens goes. It specifically does not address the presence of
comments inside hints.

Reserved Words And Keywords An identifier that has special syntactic or oper-
ational meaning is called a reserved word or keyword depending on its exact use.
The sQL reference manual has an appendix that lists the reserved words; these
words may not be used as unquoted identifiers. So, for example, a SQL table
may not be named using the unquoted identifier TABLE but it may be named
using the quoted identifier "TABLE". There are about 100 reserved words. Be-
yond these, there are around 2,000 identifiers that have some special meaning to
PL/SQL or SQL, for example LOCAL, BINARY_DOUBLE, CUBE, GROUPING, C, or ROLLUP.
A keyword may be used as an ordinary identifier, but such a use may run afoul of
its intended use as part of the PL/SQL or sQL languages. The PL/SQL compiler
issues warnings for keywords that are used as identifiers.

Practicing programmers probably do not have too much trouble with the infor-
mality of the lexical descriptions. Those who are creating machine generated code or
who are trying to decipher particularly obscure texts may wish for more clarity.

It is not to hard to write a practical lexical analyzer once token definitions are
known. There are at least three common ways to do so. The quick and dirty way is
a handwritten lexical anlayzer. Listing shows the skeleton of such an analyzer. It
isn’t hard to write predicates like isWhitespace. The arms of the CASE statement need
to be organized so that the choices are made in the proper order; for example nq'abca’
must be seen as a complete string literal, not as the identifier nq immediately followed
by the literal 'abca'. There are other practical problems to solve (notably input

10

— =

H O ©WO0 Utk W

Listing 6.1: Skeleton Of A Hand Coded Lexical Analyzer

case

when isWhiteSpace (nextChar) then — do white space
when isHintStart (nextChar) then — grab hint and recurse
when isCommentStart (nextChar) then — process comment
when isStringStart (nextChar) then — process string
when isNumberStart (nextChar) then — process number
when isOperatorStart (nextChar) then — process operator
when isAlphabetic (nextChar) then — process identifier
else
— FAIL

end case;

buffer management and subscanning of hints), but nothing beyond the capabilities of
a reasonably competent programmer.

Another approach uses reqular expression to do the pattern matching. Theoreti-
cally, programming languages define their tokens so that they are all well described
by regular expressions. In practice, this approach can be hard to use because of
constructs like NQ' string literals, hints, and comments.

A third approach uses an existing tool that constructs a lexical analyzer from a
specification of the tokens. The original Unix tool lex is a good example; there are
probably several dozen follow-ons available. The lex tool defines a domain specific
language for lexical analysis. The user writes a complete description of the tokens
(a “program”) and the tool generates code that does the analysis on demand. The
generated lexer is usually available as a callable subroutine and is often linked with
a parser built by a tool like the parser generator yacc. For a project of any size or
commercial importance, the use of a generated lexical analyzer is probably the best
choice because it will draw on considerable theory and practical experience by experts
and thus be much less susceptible to bugs and other problems. The PL/sSQL lexical
analyzer is generated precisely for these reasons. The SQL lexical analyzer is hand
written, probably because it was built at a time when tools were less widely available.

Final Thoughts

The use of Identifier and QuotedIdentifier as lexical categories may seen confusing.
PL/SQL and SQL use these terms (along with unquoted identifier) in a different way
when discussing the semantics of texts. The languages also contain reserved words
and keywords which have the same form as identifiers and may sometimes be used as
identifiers. What is going on here?

Lexical analyzers are myopic. Their categories are simple and rigid. They don’t
care about what happens to the tokens they produce. Lumping select, cube, and

11

My_Long_ID into one group on the basis of simple textual structure makes sense to a
lexical analyzer. Let the client receiving the tokens sort out the distinctions. 1 used
identifier for tokens that start with alphabetics because I could not think of a better
term. Once the next tool receives of the token stream, it may recategorize the tokens
however it pleases.

In practice, public tools like lex and the lexer used by PL/sSQL do the classifi-
cation of Identifier tokens in a separate step after each token is recognized. The
language designer provides lists of reserved words and keywords to the tool; typically,
each entry has a unique integer to encode its specific use. As an Identifer token is
discovered, it is filtered by these lists and, if found there, it is revised to fall in the
appropriate category with the encoding attached. This allows later stages (notably
the parser) to distinguish those “words” which carry special meaning. Anything that
falls through the filter is an unquoted identifier to PL/SQL and sQL. Along with the
quoted identifiers, they form the set of legal identifiers in those languages.

This note concentrates on the mechanics of lexical analysis. No attention is paid to
whether the token stream is remotely legal. Experience shows that language analysis
is best done in stages. Assigning clear responsibilities to each stage makes for better
and less buggy tools. Lexical analysis has a bright, clear definition. Better it does its
job and other tools do theirs than to build a confused mash-up.

Our friend who asked the original question probably did not expect a dissertation of
the theory and practice of lexical analysis. But because the PL/SQL and SQL manuals
do not provide a complete account of lexical structure in one place and because a little
theory always helps when understanding practical problems, my discussion erred on
the side of too much information. If our friend wants to build a new tool either to
analyze or to generate Oracle languages, I hope he has a better understanding of tool
requirements.

12

	Words
	Lexical Principles
	The Lexical Algorithm
	Categories
	The Answer
	Practice
	Final Thoughts

