A PL/SQL Inlining Primer

Charles Wetherell
Oracle Corporation

14 September 2015

Abstract

The pPL/SQL language offers the inlining optimization. This primer describes
inlining, tells how it works, and guides its use in practical programs.

Introduction

The PL/SQL language offers inlining as a performance optimization. Inlining is not a
routine part of the system; a PL/SQL programmer must ask specifically for inlining
to be applied. If it is such an important optimization, why isn’t inlining automatic?
When should inlining be used and when is it inappropriate? What is inlining in the
first place? This primer defines inlining, describes inlining’s effects, tells how to invoke
inlining, discusses the pros and cons of inlining, touches on the background theory,
and suggests guidelines for the use of inlining. An attentive reader should become an
expert on PL/SQL inlining.

A word on examples. First, examples will not necessarily be complete PL/SQL
units; where appropriate, they will just be fragments that illustrate a particular point.
Second, they will not be decorated with the SQL (for example, create or replace) or
SQL*PLus (for example, set serveroutput on) commonly found in many PL/SQL
text books and working programs. Third, the capitalization and layout will be ap-
propriate to make the points clear and not necessarily that commonly used in other
PL/SQL writings so that important ideas stand out in the examples and are not lost
in a morass of programming detail. A PL/SQL programmer will find it easy to convert
these examples to executable code.

Basic Principles

Before inlining can be defined, a few basic ideas need explanation. An example will
help. Consider the code in Listing ; line begins the definition of a top level PL/SQL
unit, [[| procedure TheWor1ld, that supplies a little universe for the explanations. Inside
this world a variable a is declared and so is an inner (and very simple) function AddMe.
On line [I2] the function is called and finally the value of the function is printed. This
is not an elaborate program.

Now some useful (if informal) definitions. In PL/SQL, both procedures and func-

Forget for the moment that standalone procedures are rare in PL/SQL.

© 00~ U WN -

Listing 2.1: The First Inlining Example

procedure TheWorld is
a pls_integer;

function AddMe(x pls_integer, y pls_integer)
return pls_integer is

begin
return x + y; —— Pretty simple!

end;

begin

a := AddMe(1, 2);

dbms_ output. put_line(a);
end;

tions are known as subprograms. Secondly, every subprogram has a definition where
it is completely described and its body is provided. The most interesting subprogram
definition is that of function AddMe beginning on line 5 There is also another defini-
tion, that of procedure TheWorld, beginning on line E| In general, a subprogram is
declared with formal parameters. Function AddMe has the formal parameters x and y.
Procedure TheWorld has none.

Subprograms are not very useful if they are never called. The PL/SQL compiler
issues warnings for uncalled subprograms because they are likely the result of pro-
gramming errors. A call site or invocation is a location where a request is made for
a subprogram to be executed. The call site on line [12] invokes the function AddMe.
At the call site, an actual argument must be supplied for each formal parameter; the
technical term is that the actual argument is associated with the parameter. At line
[12] the actual argument 1 is associated with the formal parameter x and the actual
argument 2 is associated with the formal parameter y of function AddMe’| This lan-
guage of actual argument and formal parameter may seem finicky, but in the long run
the clarity created outweighs any localized logorrhea.

When a subprogram is called, several steps are taken.

1. Each actual argument is evaluated and the value remembered. Sometimes eval-
uation may also require a type conversion of the computed value.

2. The value for each actual argument is associated with the appropriate formal
parameter.

3. A memorandum of the current execution position is noted.

4. Control is transferred to the called subprogram.

2For the PL/sQL purists, a subprogram may also have a declaration that does not provide the
implementation. Such declarations occur in package specifications, for instance. But a declaration
is, in general, optional depending on the use of the subprogram while a definition is always required.
If only the definition appears (as here for AddMe), then it doubles as a declaration.

3PL/sqQL allows named and default associations. Nonetheless, when all the rules for these mech-
anisms are applied, every formal parameter must have an actual argument associated with it. It is
not too surprising that the PL/SQL compiler actually makes an explicit association list internally
for each call to ensure that the rules are followed.

© 00~ U WN -

Listing 2.2: First Example With AddMe Call Inlined

procedure TheWorld is

a pls_integer;

ActualArgl pls__integer;
ActualArg2 pls__integer;
ReturnValueFromAddMe pls__integer;

function AddMe(x pls_integer , y pls_integer)
return pls_integer is

begin
return x + y; — Pretty simple!
end;
begin
— a := AddMe(1, 2);
ActualArgl := 1;
ActualArg2 = 2;

ReturnValueFromAddMe := ActualArgl 4+ ActualArg2;
a := ReturnValueFromAddMe;
dbms_output.put_line(a);

end;

5. A new storage structure (commonly called a frame) is created for the subpro-
gram. The frame provides storage for the local variables and other data needed
to execute the subprogram.
The frame is initialized with any necessary control data.
7. Execution of the subprogram proper begins. The work starts just after the word
is in the subprogram’s definition.
8. When it encounters a return, the subprogram’s execution ends. The return may
be implicit in a procedureﬁ
9. For a function, the return value is copied back to storage provided by the caller.
10. The subprogram’s frame is destroyed.
11. Control returns to the location remembered back in step [3

&

The exact work to be done and how hard it is to do depend somewhat on details
of the source code, of the subprogram to be called, of the actual arguments, and of
the data types involved. For example, evaluation of the actual arguments 1 and 2
is not very hard so that they don’t create much work. Sometimes, though, a copy
of large data structure might be required. Regardless of the details, it is clear that
subprogram invocation is potentially an expensive operation even if many of the steps
may be simplified for particular invocations.

And this leads directly to inlining. To avoid some of the work, a copy of the
subprogram (not including the declarative prolog) replaces the call and the modified
program is executed instead. Some plumbing is added to make the copy run properly.
Listing displays the result of inlining the call to function AddMe. This also explains
the name inlining: the code for the called function is now in line with the rest of the
source code around the call site.

First, notice that some new variables have been added at lines [d] through [6] These
variables are used to pass values into and out of the copy of function AddMe because

4pL/sqQL subprogram execution may also end because an exception was raised, but that point
only complicates this discussion to no end. The topic will be considered again later.

the copy drops the association between formal parameters and actual arguments. The
function definition on line [§] is unchanged. The function call on line is dropped
because the call is being replaced; it has been left in the source as a comment as an aid
to explanation. Instead of actual argument associations with the formal parameters,
the actual arguments are now evaluated and stored in the new variables starting
on line [I6l The body of the copied function appears on line [I§ Notice that the
formal parameters x and y have been replaced with the new variables ActualArgl and
ActualArg?2 as part of the copying process. Also notice that the copy line assigns the
value of the function to the new return value variable ReturnValueFromAddMe. Finally,
on line[I9] that return value is assigned to the variable a just as the return value from
function AddMe was assigned in the original program.

What are the costs and benefits of this inlining operation? First, the original
function AddMe contained essentially four operations:

e an enter operation to set up the function’s frame.

o an add operation to compute x + y.

» a store operation to remember the result.

« a return operation to remove the frame and pass execution back to the caller.

In addition, there was a call operation at the call site. To execute the call, a total of
five operations were necessary, not counting those needed to evaluate and store the
actual arguments and to move the return value into the variable a.E] In the copy, only
two of these operations remain: the addition and the storage of the result. In other
words, of the five operations for the call, inlining has removed three and left only two.
The inlined version of this call is roughly 2.5 times faster than the call itself.

What are the costs? The primary cost is that both the storage for procedure
TheWorld and the amount of source code has been increased. The procedure has four
local variables where it used to have only one and there are four source code lines
replacing the one line with the call. And this is not just an artifact of doing the
inlining in source; these are real additions to the size of the procedure. If enough
inlining is done, the size of the source code can grow very large; the technical term is
that the program suffers code bloat. 1t is possible, if highly unlikely, that a bloated
PL/SQL unit might consume so many resources that it could not be reliably executed
or, possibly, might not even be compilable. In practice, this does not happen, but
code bloat will be discussed again later.

Because inlining adds operations to which other optimizations apply, these prob-
lems are ameliorated. Basically, operations in the function AddMe are not available
for cross optimization from the original call site because the function might be called
from many places and so what would be a good optimization for one site might be
bad or dangerous for another. But once the copy is made, the copied code is right at
the call site and is available for optimizations that apply only to the copy and that
may arise from interactions with other code surrounding the copy.

Listing shows the optimizations. Because the original actual arguments are
constants, they can be propagated forward into the addition operation on line[I8 But

°In practice, the PL/SQL compiler can sometimes simplify or eliminate some of these operations,
but the basic pattern is correctly described.

© 00~ U WN -

Listing 2.3: First Example After Optimization

procedure TheWorld is

a pls_integer;

— ActualArgl pls__integer;
— ActualArg?2 pls__integer;
—— ReturnValueFromAddMe pls__integer ;

— function AddMe(z pls__integer, y pls_integer)
— return pls__integer 1is

— begin
— return x + y; — Pretty simple!
— end;
begin
— a := AddMe(1, 2);
— ActualArgl := 1;
— ActualArg2 := 2;
— ReturnValueFromAddMe := 1 + 2;
a = 3;
dbms_output.put_line(a);

end;

now that addition just produces the constant 3 and so the constant can be assigned
directly to variable a on line Because the computation has all been eliminated,
the new variables needed for the inlining copy may also be dropped; the lines that
used them are now commented out. And because the function AddMe no longer has
any calls, it also may be dropped.ﬂ

The net effect of inlining is to replace about seven operations (argument evalua-
tions, call operations, and return value copy) with one (assignment of a constant to a
variable). The execution will be much faster. In addition, the procedure TheWorld has
become smaller because the object code space needed for function AddMe is no longer
necessary. In effect, optimization has not only compensated for the bloat introduced
by the inlining copy, it has slimmed the entire procedure down even further. The in-
creased visiblity of operations in the copy affords new opportunities for optimization.

To summarize, inlining replaces a call to a subprogram with a copy of its body while
making accommodation for the connections of actual arguments, formal parameters,
and return values. By itself, inlining saves some of the subprogram call cost, notably
the costs of creating, initializing, and then destroying a stack frame. This benefit
may be offset by the additional storage needed for variables from the copy and by the
increased size of the object code at the (now replaced) call site. But because the copy
is now exposed to other PL/SQL optimizations, the final result may be both faster

6An astute reader might notice that the assignment of 3 to a is also unnecessary because the
value 3 could be passed directly to dbms_output.put_line and variable a could be eliminated.
This final optimization is not done because the PL/SQL compiler has a policy of keeping assignments
to user defined variables even when they are useless. The policy is in place to help programming
tools make better sense of user source code. The policy is regularly reviewed and may change in the
future.

7AddMe is a local subprogram and so it is possible to determine absolutely that it has no remaining
calls. If this example had been coded as a package body and if AddMe been a function visible through
the package specification, then it could not have been removed because there might still be calls from
other units to it.

and smaller than the original call and may reduce the size of the entire surrounding
PL/SQL unit. Inlining almost always provides a modest execution speed benefit, but
it often provides much larger benefits in both speed and size.

The example shows inlining done at the PL/SQL source code level. The PL/SQL
compiler actually operates on an internal representation of the program, not on source.
But the principles are exactly the same. The compiler does not do any special magic
beyond the ideas discussed so farff

When the copy was made, some new variables were created to hold values. These
variables had to be in the same declaration scope as the call site and so Listing
showed them as ActualArgl, ActualArg2, and ReturnValueFromCallMe. Why not
just use the old formal parameters x and y? The reason is that such a use might
capture existing names in the environment of the call site; what if there were already a
variable x in the main declaration list of procedure TheWorld?ﬂ The same mistake could
be made with local variables declared inside the copied subprogram. The PL/sSQL
compiler is very careful to invent new variables for the copy and to ensure that these
variables do not capture any existing ones.

Earlier, it was noted that the called subprogram might end with an exception.
Even more, the called subprogram might include both exception handlers and inner
subprogram definitions. Suffice it to say that the copy is very careful to preserve these
items so that they work exactly as they would have worked if the called procedure
was not copied to the call site. The details are not enlightening, but correct PL/SQL
behavior is maintained. Later, the question of choosing which call sites are candidates
for inlining is considered. Both the presence of inner exception handlers and of inner
subprograms lower the likelihood of a particular call site’s selection for replacement
precisely because of the complications these two PL/SQL features entail during the

copy.

Managing Inlining

Inlining is a PL/SQL compiler optimization and its use is managed in two ways.

o Inlining can be applied to an entire PL/SQL unit by setting the PL/SQL opti-
mization level.
o Inlining can be applied to a particular call site with a pragma.

8Programmers familiar with other languages probably will notice that inlining is much like the
use of macros. There are some differences in theory, but the effects are similar.

9For those who enjoy language theory, sloppy inlining might convert a free variable into a bound
variable when that would be an error. This is a common error with macros, one of the reasons they
are sometimes regarded as dangerous.

PL/SQL optimization is controlled by the initialization parameter plsql_optimize_level

which has four legal values.

0 Optimization is almost entirely turned off to retain compatibility with some very old
Oracle releases. This level should only be used in extraordinary circumstances.

1 Only local optimizations are applied. This level should be used only for code that
needs to be debugged using the PL/SQL debugger.

2 Local and global optimizations are applied. This level is the default for the good
reason that it typically speeds PL/SQL code up by a factor of 2 to 3 times.

3 Inlining is automatically applied on top of the optimizations provided by level 2.
It is likely that most applications should use this optimization level because it
probably will improve performance noticeably.

The optimization level is set in all the normal ways (including ALTER COMPILE) common
in the Oracle database. For example,

alter session set plsql_optimize_level = 3

turns on inlining for units compiled later in the same session.

Inlining can also be controlled on a call by call basis with the pragma INLINE.
The pragma occurs before the statement that contains a call site and and requests or
blocks inlining of a particular subprogram in that statement. The INLINE pragma has
two parameters.

Subprogram identifier The identifier for a subprogram that is visible at this point
in the program.
Control A varchar2 value that is YES or NO. Case is irrelevant.

If the subprogram identifier appears in the statement immediately following the
pragma, then the control value is applied to all calls of the subprogram in that
statement. If the control value is YES, the calls to the subprogram that appear in
the statement are inlined. If the control value is NO, no calls to the subprogram that
appear in the statement are inlined. The pragma is effective only when the optimiza-
tion level is at least 2. A request for inlining (that is, when the control is YES) may
be ignored for a variety of technical reasons; if it is, a warning will be issued. Other
problems with the pragma will also be diagnosed with warnings.

Pragma INLINE may also appear before a declaration[l] There are two cases. If
the declaration contains initializers and the pragma names a subprogram invoked
in the initializations, then the subprogram will be inlined in the execution of the
initializers.[zf] If the pragma’s subprogram identifier specifies the subprogram being
declared, it controls all calls to that subprogram (and any overloads) throughout the
declaration scope of the subprogram. This allows inlining to be turned on or off for
all invocations of a particular subprogram.

Listing [3.1] provides some examples of pragma INLINE. Line [9| requests the inlining
of the function call of MyFunc in the following assignment statement. On line
the pragma stops any inlining of the procedure MyProc on the following line. Finally,

0Remember that a subprogram definition is also a declaration of the subprogram
"' This does not apply to subprograms that appear in the default initializers of records.

© 00~ U WN -

Listing 3.1: INLINE Pragma Examples

pragma inline (Makelt, 'YES’);
x pls_integer := Makelt(27)/3;

pragma inline (NotAChance, ’YES’);
function NotAChance(s varchar2, f number);
function NotAChance(i pls_integer);

pragma inline (MyFunc, 'YES’);
a := b 4+ MyFunc(1, cx*d);

pragma inline (MyProc, ’NO’);
MyProc(1, ’abc’, x != y);

pragma inline (AnotherFunc, ’'YES’);

pragma inline (AnotherProc, ’YES’);

pragma inline (NotAChance, ’'NO’);

AnotherProc (AnotherFunc(x, 2), NotAChance(’def’, 1.23))

the three pragmas beginning on line request the inlining of the calls of function
AnotherFunc and procedure AnotherProc but stop the inlining of function NotAChance.
Notice that there are three pragmas controlling one statement; pragmas themselves
are not statements and so the control passes through them until a statement is found.
Remember, though, that requests to inline a subprogram are just that: requests; they
may not be honored. A pragma that blocks inlining will always be honored.

On line [2| pragma INLINE applies to the declaration of a variable x and causes the
call to function MakeIt to be inlined into the initialization expression computation.
The INLINE pragma on line [5| requests that all calls to function NotAChance be inlined.
There are two things to note here. First, the request applies to both overloaded
versions of NotAChance. Second, the INLINE pragma on line cancels the general
request to inline function NotAChance so that it does not apply to the next statement.

How Inlining Works

When the PL/SQL optimization level is at least 2, the inline mechanism is activated.
Each subprogram call site is a candidate for inlining. What determines whether a
particular call is replaced?

The first difference is between optimization levels 2 and 3.

Level 2 Only call sites or subprograms with pragma INLINE are candidates for inlin-
ing.
Level 3 All subprogram call sites are candidates for inlining.

Once the initial candidate list is generated, inlining operates the same way at each

optimization level.

Once the candidates have been listed, an inlining budget is created. Every replace-
ment (potentially) enlarges the source code where the replacement occurs. The cost
of the replacement is some measure of the increase in size. One might, for example,
charge a cost measured in source lines of the replaced subprogram[”?] The budget is
decremented each time a replacement is made and once the budget is exhausted, no
more replacements are done. The PL/SQL compiler currently has a budget that is
equal to the size of the unit being compiled; this allows inlining to double the unit’s
size before inlining is stopped. It should be said that it is possible to exceed the
budget in contrived examples, but that real world units seldom come close to doing
SO.

Once the candidate list is built, a particular candidate must be selected. The
choice is made by scoring the candidates. Each call site is given a score that may
grow arbitrarily large; the site with the greatest score will be chosen for inlining.
The score is made up from several factors and the various factors may be weighted
differently. Here are some of the factors[|

Size of subprogram The smaller the subprogram to be inlined, the better.

Constant arguments If some actual arguments are constants, the better because
they generally provide more possibilities for other optimizations.

Number of arguments The more actual arguments, the better.

Inner calls The fewer inner calls, the better.

Definition depth The more deeply nested the subprogram definition, the better.

Nesting depth The more deeply nested in loops the call site, the better.

Only call If this is the only call site for the subprogram, it is preferred because the
subprogram can be removed after inlining is complete.

Pragma If the INLINE pragma requests inlining, a huge bonus applies. If the pragma
stops inlining, the score is adjusted so that this call site can never be inlined.

Once all the call sites have been scored, the site with the highest score is inlined.
This has two effects. First, the budget is decreased by the cost of the inlining; if the
budget ever drops to zero or below, inlining is stopped. Second, the copied code may
introduce some new call sites because the body that was copied had subprogram calls
within it. These new call sites are added to the list of candidates for the next round
of scoring.

Inlining always stops when the budget is exhausted. It may stop before if there

12In fact, the cost is measured in terms of operations needed to execute the subprogram. This is
an internal PL/SQL compiler measure, but it is almost exactly proportional to the number of source
code elements (identifiers, operators, reserved words, and the like) used to write the subprogram.

13The factors used in the score and their weights may be changed from time to time as experience
with inlining suggests that modifications to the PL/SQL compiler would improve its ability to make
intelligent inlining choices.

10

are no suitable call sites left to inline.

Limitations

Not all requests for inlining are honored and not all call sites are eligible for inlining.
One limit on inlining has already been described: if the inlining budget is exceeded, no
further inlining will be done. It is unlikely that this is an issue in real world programs,
but it can occur. At optimization level 3, once the budget is exceeded, the compiler
silently continues with its other work. But if an inline request is made by the pragma,
the failure to inline the call site is noted with a warning.

Sometimes a particular subprogram cannot be inlined or a particular call site is
not eligible for inlining because of the structure of the subprogram or the context of
the call site. These limits exists because the PL/SQL compiler uses mechanical rules
to ensure that each inlining operation is safe. This is a positive check; safety must be
assured before inlining can take place. The rules simply may not cover all possible
situations perhaps because the rules would become too complicated and costly or
perhaps because some new feature has been added and the rules have not yet caught
up. Such “holes” in the analysis for inlining are unlikely to have much effect in real
world programming and may change from time to time as PL/SQL changes and as the
compiler improves.

The most important limit is that only subprograms defined in the current unit
can be inlined in the unit. These are known as local subprograms. Other subpro-
grams cannot be inlined. Listing provides some examples. On line [3| procedure
TallDarkAndHandsome is declared in package Foreign. Package Myself defines public
procedures BlandBlond and InTheMirror beginning on lines [7] and [§ In the body of
package Myself, there is a local procedure WhatAHunk defined beginning on line
And, of course, there are several call sites for the subprograms. Which of these call
sites could be inlined?

The call to procedure BlandBlond on line 15 may be inlined because BlandBlond
is defined in this unit on line — and, of course, it was declared in the package
specification on line [/} Similarly, the calls to BlandBlond on lines 25] and [3I] may
also be inlined for the same reason. The call to InTheMirror on line [33 follows the
same pattern and so it may be inlined. The call to WhatAHunk on line may be
inlined because that local procedure is defined (and, in passing, declared) on line
[13] But the calls to TallDarkAndHandsome on lines [26] and [32] may not be inlined
because that procedure is declared in another package specification on line [3] and
must be defined in another package body. Because of its familiarity and because it
feels like part of the PL/SQL language (like many other supplied subprograms), the
call to dbms_output.put_line on line 20| may seem to be an inlining candidate. It is

11

© 00~ U WN -

Listing 5.1: Inlining Limitations

package Foreign is
procedure TallDarkAndHandsome;
end Foreign;

package Myself is
procedure BlandBlond;
procedure InTheMirror;
end Myself;

package body Myself is

procedure WhatAHunk is
begin

BlandBlond ;
end;

procedure BlandBlond is
begin

dbms_output.put_line(’I like cottage cheese ’);
end;

procedure InTheMirror is
begin
BlandBlond ;
Foreign . TallDarkAndHandsome;
WhatAHunk ;
end;

begin
BlandBlond;
Foreign . TallDarkAndHandsome;
InTheMirror;

end Myself;

a subprogram call just like that to TallDarkAndHandsome. But it is also barred by the
same rule against foreign subprograms.

Why is there a restriction against inlining foreign subprograms? Because PL/SQL
has an automatic validation mechanism for all programs. Whenever one unit refer-
ences an item in another unit, there is a dependency created between the units. When-
ever a unit is known to be invalid, the PL/SQL system attempts to recompile it so that
it becomes valid again. For example, in Listing [5.1], the call to TallDarkAndHandsome
on line [26| creates a dependency from package body Myself to package specification
Foreign. If, for example, the anonymous block

begin Myself.InTheMirror; end;

were to be executed, the first step would be to ensure that the package specification
and the package body of Myself were both valid. But that check cannot be completed
until it is certain that the package specification for package Foreign is also known to be
valid. Thus the use of items from one unit in another creates a chain of dependencies
that all must be checked — and, if necessary, revalidated — before the starting point
can be executed.

Notice that the dependency link is from a use of an item (a subprogram call site,

12

for example) to the declaration of that item as either a top-level subprogram defini-
tion or as an element of a package specification[¥] So long as the dependency link is
on the package specification and there is no change in that specification, the corre-
sponding package body may be modified and recompiled repeatedly without causing
the invalidation of the unit containing the call to the subprogram.

If inlining could be done across unit bodiesE] (that is, globally), then there would
be an additional dependency between the call site and the package body where the
implementation of the called routine resided. Whenever that package body changed,
the caller would also have to be recompiled because the caller would be invalid. While
this does not make the notions of dependency and validation any less useful nor does
it break the theory behind them, it would make the frequency of unit compilation
much higher than it is today. Every bug fix in a package body could easily trigger
a giant cascade of recompilations whereas, under the current regime, only changes in
visible specifications trigger recompilations/']

In summary, the benefits of global inlining do not seem to balance the costs of
increased compilation caused by the greater dependency between units.

o Inlining of calls across PL/SQL units (global inlining) could be done. There is
no theoretical bar to doing so.

 Global inlining would add many new dependency links to the PL/sQL validation
mechanism. The effect would be to cause many more compilations of units
because of changes (particularly in package bodies) that currently do not trigger
revalidations.

Any demonstration of a real world program that had significant performance improve-
ments from global inlining would be a reason to reconsider the cost/benefit analysis.

Compilation Information

Whenever inlining operations are requested or occur, the PL/SQL compiler provides
information about what happened. The reports are warnings and informational mes-
sages from the compiler and they appear if PL/SQL warnings have been enabled.

Listing gives some examples of inlining informational messages. Line (1] is the
message that reports an instance of inlining. Here it reports that a call to Add_Numbers
has been replaced. The message on line [says that Add_Numbers has been removed

4Tn practice, there are very few top-level subprograms defined or used in PL/SQL.

15 Again, the only interesting units are package bodies.

16 And with the use of fine-grained dependency analysis, recompilations are even rarer because
only a change that could cause a problem actually triggers the recompilation; an irrelevant change
(say, to a comment) is ignored.

13

— =

H O ©WO0 Utk W

Listing 6.1: Inlining Information

err 6005, sev
err 6006, sev

3, (13,3) inlining of call of procedure ’ADD_NUMBERS was done
37
err 6002, sev 3,
37
37

(

(6,3) uncalled procedure "ADD NUMBERS' is removed.

(19,26) Unreachable code
err 6004, sev (
err 5012, sev (

13,3) inlining of call of procedure ’ADD NUMBERS requested
13,3) pragma INLINE for procedure ’ADD_ NUMBERS’

could not be applied
err 6008, sev 3, (25,3) call of procedure ’'ADD NUMBERS' will not be inlined
err 5011, sev 3, (24,3) pragma INLINE for procedure ’ADDNUMBERS

does not apply to any calls

err 5008, sev 3, (24,10) illegal number of arguments for pragma INLINE
err 127, sev 1, (24,10) Pragma INLIN is not a supported pragma

entirely from the source of the program. This happened because all the calls were
inlined and so no calls remained. While this is not strictly an inlining message (it
can happen to any uncalled subprogram), it happens quite commonly when inlining
is turned on. Line [3| reports that some code is unreachable. Again, this message can
occur whether inlining is turned on or not, but it is much more common when inlining
is active. In this case, inlining exposed some constants to the PL/SQL optimizer and
the compiler was able to determine that the Boolean expression controlling an IF
statement was always FALSE. This allowed the code in the THEN branch to be deleted
as unreachable. One of the major virtues of inlining is that such optimizations become
much more likely.

The message on line 4| appears when pragma INLINE appears in the source code.
Line 5| reports that a call site that has had a pragma INLINE request cannot, in fact, be
inlined. There may be several reasons for this, but the most likely is that the inlining
budget has already been exhausted and so no more inlining can be done. When
pragma INLINE turns off inlining for a particular call site, the message on line [7| may
appear, depending on the optimization level. If pragma INLINE names a subprogram
that does not appear in the following declaration or statement, the message on line
appears. When pragma INLINE has the wrong number of arguments, the message
on line [10] appears. Finally, a typing error causes the error message shown on line
Syntactic errors (dropping the trailing semicolon, for example) cause the same kind
of error messages as other PL/SQL mistakes would cause.

Inlining Guidance

Inlining is a powerful optimization. It can speed particular programs up dramati-
cally. In real programs, many inlining opportunities exist. Most programs have small
“helper” subprograms that are called often to provide some simple service. These are
excellent candidates for inlining because the call overhead can be avoided. Also, many

14

programs include large subprograms that are called only once. These are also good
candidates for inlining. Quite commonly, the reason for writing a subprogram that is
called at just one place is to improve software clarity and reliability. If the subprogram
is inlined, the advantages of “in place” execution become available without any need
for the programmer to damage the neat logical structure of the program.

The advantages of inlining are apparent. There are two known disadvantages.

e Done to excess, inlining can cause object code bloat.

» Compilation times are generally somewhat longer because each copy of an inlined
subprogram requires its own compilation work above that needed for the original
subprogram.

Testing suggests that PL/SQL packages to which inlining is applied often have smaller
object code than their original versions. In other words, optimization level 3 can
reduce total storage space. And, because of the budget mechanism explained earlier,
the size increase can never become too large. Compilation time for a single unit on
modern PL/SQL systems is so fast that the small additional time taken for inlining is
almost undetectable.

When the PL/SQL compiler first offered inlining, a policy choice was made to
allow users complete control over the operation. Thus, pragma INLINE and PL/SQL
optimization level 3 make customization of inlining easy and convenient down to the
individual call level. Every application can apply the detailed inlining appropriate to
its own situation. Combined with the information messages about inlining, users can
be very comfortable with their use of inlining and their understanding of its effects.

With all this in mind, how should inlining be used for production applications?
The basic recommendation is that all units should be compiled at optimization level
3 — that is, with inlining on — and that pragma INLINE should be used sparingly to
turn inlining off for those few call sites where it can be proven to be detrimental.
Obviously, particular units might also be compiled at optimization level 2 rather than
3 if there is some specific and demonstrable reason that the entire unit should not
have inlining applied.

Inlining is a safe and effective optimization that almost always improves application
performance and has no important disadvantages in its PL/SQL implementation. In-
lining should be routinely applied in every development and production environment.
Finally, as with other aspects of PL/SQL program development, keeping warnings
enabled at all times will improve understanding of the effects and benefits of inlining.

15

	Introduction
	Basic Principles
	Managing Inlining
	How Inlining Works
	Limitations
	Compilation Information
	Inlining Guidance

