
What A Surprise! Or Not!

Charles Wetherell
Oracle Corporation

28 September 2015

Abstract

A procedure has a surprising outcome. Or does it? Once the pl/sql rules
are understood, there are fewer surprise in life.

1

1 Introduction

A correspondent recently sent the pl/sql team a small code example and reported
surprise at the program’s behavior. Once the example was stripped of superfluities,
the behavior was easily explained because of a simple rule every pl/sql programmer
should know. The rule and its application to the example are explained here in great –
not to say, excruciating – detail for those pl/sql programmers who enjoy unraveling
mysteries. Some morals are drawn.

2 The Example: A Surprise?

Listing 2.1 shows the program. Briefly, the procedure creates a variable, initializes it,
calls an inner procedure with that variable as an in out argument, and then, in an
exception handler, reports the value of the variable. The correspondent was surprised
at the value reported.

The reasoning went like this.
• On line 3, variable Skittish is initialized to 97.
• On line 17, procedure Changer is called with Skittish as an actual argument

associated with a formal parameter t that is marked in out.
• On line 7, the formal parameter t has its value changed by adding 42. No change

should have been made to the corresponding actual argument.
• On line 8, the procedure raises an exception and so does not return normally.
• When the print on line 20 is reached, it should print 97 because the actual

argument should remain unchanged until the call on line 17 finishes normally.
• However, the correspondent observed that the value printed was 139 and was

surprised.

2

Listing 2.1: The Surprising Procedure
1 procedure SurpriseMe i s
2
3 S k i t t i s h p l s _ i n t e g e r := 97 ;
4
5 procedure Changer (t in out p l s _ i n t e g e r) i s
6 begin
7 t := t + 42 ;
8 r a i s e zero_div ide ;
9 end ;

10
11 procedure Watcher i s
12 begin
13 dbms_output . put_l ine (S k i t t i s h) ;
14 end ;
15
16 begin
17 Changer (S k i t t i s h) ;
18 except ion
19 when zero_div ide then
20 Watcher () ;
21 end ;

3 The Mystery Demystified

Is this surprise warranted?
If the surprise were sensible, there would be no point to this note. The astute reader

will already have guessed that there must be an explanation that is not surprising.
Indeed there is and here it is.

Our correspondent has the general principle correct that the actual arguments
associated with formal parameters tagged out or in out1 are not given their new
values until the call to the subprogram ends. But there is another more specific rule
about calls that went unnoticed.

When a call terminates with an unhandled exception, the value of
an actual argument associated with an out formal parameter becomes
undefined.

And that’s true for every single actual argument so associated in a particular call.
This rule appears in the current pl/sql manual immediately after the discussion of
parameter modes.

1Strictly speaking, the notion of out formal parameter encompasses in out formal parameters
for the purposes of this discussion. The rest of the note will just call them out parameters.

3

What does undefined mean? It means that there is no prediction about what
the value will be. It does not mean that the value will be null although that is a
possibility. It simply means that there is no way to predict in advance what value
will appear. Moreover, there is no requirement that the value stay the same from one
execution to another or from one day to another. To repeat (redundantly), there is
no information available about the value; what you see is what you get.

It does not matter what caused the exception. Here, the procedure raised an
exception explicitly. But it could have been raised implicitly; so long as it escapes
the procedure to the caller, that is sufficient to trigger the rule. And the call itself
might trigger the exception. For example, evaluation of an actual argument might
have a problem and the subprogram might never even be called. It is also possible
that moving out values back from the call to the actual arguments could raise an
exception. No matter where the exception comes from, if it does happen, the actual
arguments instantly become undefined.2

And that solves the (apparent) mystery. When the procedure Watcher looked at
the actual argument Skittish in the exception handler, the value of Skittish was
already undefined; it had become undefined at the moment the zero_divide exception
hit the call. Once the value is undefined, it might be anything. In particular, Skittish
could have the value 97, the value 139, the value -183, the value null, or any other
value that a pls_integer variable may hold. And on the next execution, it could
return yet a different value.

4 Some More And A Moral

As it happens, there is a reason why the output might be 139; this didn’t happen
entirely by chance. The compiler is smart enough to notice that after the call to
Changer, there are no references to Skittish that can see the defined value of Skittish.
The reference through Watcher does not count because it is only looking at the value
and the value is undefined at the moment Watcher is called. Once this fact was known,
the compiler realized that Skittish can be passed as if nocopy had been specified.
Thus the assignment (:=) in Changer reset variable Skittish directly; there was no
copy made. On the other hand, if any real reference to Skittish occurs on some legal
code path following the call, this optimization will not be applied.

The correspondent who noticed this mystery happened to compile the example at
two different optimization levels. At one level, the compiler made this change; at the
other, it didn’t. But this pattern cannot be relied upon; the pl/sql team is free to

2This rule also applies when the nocopy hint has been applied to some (or all) of the formal
parameters. Undefined is undefined and there is no getting around it.

4

change the specifics of optimization at any moment, always presuming that program
semantics are preserved. The pattern may also change depending on the specific text
of the program at hand. Nonetheless, it is comforting to have an explication of the
mysterious, especially when the mystery turns out to be mundane.

And now the moral. When pl/sql says something is undefined, no useful reliance
can be placed on the undefined item. There is no pattern, no necessary reasoning, no
experiment, that can provide a useful explanation of the status of the undefined item.
Take care to know when undefined items appear and do not rely on them.

Finally, I have written a paper Freedom, Order, and PL/SQL Optimization that
discusses many similar topics. If you enjoyed this account of a mystery solved, you
may also enjoy learning more about pl/sql and its definition. The URL for the ZIP
file is

http://www.oracle.com/technetwork/database/features/plsql/
codeorder-133512.zip

You may also find the general Oracle pl/sql page oracle.com/plsql worth explor-
ing. You can find a link to the paper and much else there besides.

5

http://www.oracle.com/technetwork/database/features/plsql/codeorder-133512.zip
http://www.oracle.com/technetwork/database/features/plsql/codeorder-133512.zip
oracle.com/plsql

	Introduction
	The Example: A Surprise?
	The Mystery Demystified
	Some More And A Moral

