
Things, Names, And Identifiers

Charles Wetherell
Oracle Corporation

October 24, 2019

Abstract

Databases are full of things: tables, sequences, columns, views, pl/sql
units, what have you. Things have names and are manipulated by mentioning
the names. The programming languages sql and pl/sql use identifiers, not
names. Questions show many programmers are confused about the difference.
This note describes the relationships between things, names, and identifiers.
Once the programming rules are absorbed, developers can write code faster and
with less heartburn.

1

1 A Coding Question

Programming is the art of
algorithm design and the craft
of debugging errant code.

Ellen Ullman

Imagine a pl/sql program where it is necessary to select the values of a single
column from a table where both the column and the table are to be specified at
execution. The EXECUTE IMMEDIATE statement constructs and executes sql statements
“on the fly”. Also imagine the application already has a library procedure Runit for
this chore. Figure 1.1 shows a little bit of the procedure and five possible calls.
Presuming that goal is to select the column Salary from table emp, which of these
calls will work and why? What are the problems with the calls which don’t work?

Listing 1.1: A Program Snippet
1 procedure RunIt (TableID varchar2 , ColumnID varchar2) i s
2 . . .
3 begin
4 . . .
5 execute immediate ’ s e l e c t ’ | | ColumnID | | ’ from ’ | | TableID i n t o MyVal ;
6 . . .
7 end ;
8
9 RunIt (emp , Sa lary) ; −− F i r s t c a l l

10 RunIt (’ emp ’ , ’ Salary ’) ; −− Second c a l l
11 RunIt (’ emp ’ , ’ " Sa lary " ’) ; −− Third c a l l
12 RunIt (" emp" , ’ " Sa lary " ’) ; −− Fourth c a l l
13 RunIt (’ "EMP" ’ , ’ " Sa lary " ’) ; −− F i f t h c a l l

This note provides a way to think about these questions and – yes – the answers
to the quiz are provided later – but don’t peek! Before the answers, a journey through
näive philosophy and some programming language technique will provide background
for understanding. Theory and practice merge and illuminate the answers. Even if
the theorizing slips away from memory, the rules that govern names and identifiers are

2

clearly stated and should remain ingrained so that one class of programming errors
occurs no more.

2 Things And Signifiers

Kid: What do monsters eat?
Dad: Things.
Kid: What do monsters drink?
Dad: Coke.
Kid: Why?
(Cue jingle) Things go better
with Coca-Cola,
Things go better with Coke!

1960’s advertising

A database is full of things. The main things are tables, but there are many
others: views, columns, sequences, data types, pl/sql units, on and on. Databases
exist so data can be stored and manipulated and retrieved. For example, it may
be interesting to find the total salary of each employee last year and to have that
report sorted by department number first and employee name second. Probably the
data is stored in several tables, one for employee personnel information, one for the
departmental organization, and one for salary payment transaction records. Assume
every employee has a Social Security number and that each employee record contains
that number. Matching records from the three tables using Social Security numbers
builds the report. sql programmers recognize this as a basic database operation.

How are the necessary tables, columns, and so on accessed? Informally, tables
and columns were described in terms of their properties. This is not enough; what
might be a departmental organization table to me might be a personnel assignments
table to you. To avoid ambiguity, database things are referenced by their names.
For example, the table of all employees might be named Employees, the table of
department information named DEPT_ORG, and the salary table named salary.1 The
Social Security number columns might all be named SS_ID. To operate on the things,
the operations mention their names. One property of names can already be seen: the
same name might apply to different things in different contexts.

1Names with mixed cases are unusual; they appear here as prelude to explanations which will
come later.

3

Another question arises. How are the operations on these things specified? Typ-
ically, a sql statement or a pl/sql program drives an operation. A sql statement
for salary report might start like this:

select "Employee".surname, sum(salary.amount), ...
from "Employee", salary, DEPT_ORG
where "Employee".ss_id = dept_org.ss_id ...

The sql statement is a program text and mentions of database elements appear in it.
But why is the departmental organization table mentioned once as DEPT_ORG and once
as dept_org? Why is the employee information table mentioned as "Employee" with
those double quote marks " wrapped around the text? Why is the Social Security
column name written ss_id rather than SS_ID as it was before?

The short answer to all these questions is that program texts contain identifiers
and not names. Just as names reference things, identifiers reference names. The point
of this paper is to understand the connections between things, names, and identifiers.

Things are the stuff of the world. Everything about us and everything we use is a
thing. A database reflects many things.

• The employees whose information is in the database.
• The HR forms that encapsulate each employee’s company life – pieces of paper

with ink marks on them – each form and each ink mark itself a thing.
• The item each group of ink marks represents – for example, a salary.
• The datum – a number or text – that abstracts an item.
• The database tables that record this data.
• The particular data values inserted in the tables to one employee.

This list could go on. How is a particular thing singled out and how are groups of
things discussed?

Linguistics and philosophy together provide an answer. Consider this sentence:
The postman delivered three letters to John Smith at 123 Maple.

We understand some facts about the real world from this sentence.
• A person (postman) who delivers mail acted in the past.
• The action involved 3 objects (the letters).
• There was a specific number (3) involved.
• Another particular person (John Smith) received the letters. The name John

Smith gives us the knowledge that a specific person was intended.
• The delivery took place at a building at a particular location (123 Maple). This

is not the proper building name, but rather a geographical locator that allows
the house to be found.

What this sentence did not include was any direct sensation that would allow us to
observe the mail delivery. The sentence does not include any people, any envelopes,
any houses. How is it possible to be certain what the sentence is describing?

Linguistics says that the nouns in a sentence are references to things, not the things
themselves. The words used to signal the reference have an arbitrary connection to the
things being discussed. For example, the postman in English might be the mailman or
the mail carrier. In German, the Postbote, in French facteur or factrice, in Croatian

4

poštar, and so on. The connection of 123 Maple to a particular building is obviously
arbitrary. Both the naming of the street itself and the ways the numbers are attached
to buildings are conventional and open to change. Similarly, John Smith might have
been named Jonathan Smith or Johann Schmidt or even Jon Smith Baring-Gould-
Postlethwaite and would still be the same person.

Philosophy tells how to understand these references. The noun postman is a signi-
fier and the particular person who was delivering the mail on that day is the signified.
There is a arbitrarily defined link between the signifier and the signified. In any par-
ticular language, the common nouns link to common objects and we all learn the links
as part of learning the language. Proper nouns are more arbitrary. We have to be
introduced to John Smith the first time we meet him; there is no indication on the
person standing before us of the proper noun used to name him.2

There are some rules for signifier/signified relation.
• It must stay stable for any one interaction, whether a single word or long con-

versation such as a program.
• A signified thing may have more than one signifier. For example, the postman

has different signifiers in different languages and at least three different signifiers
in ordinary English. The particular postman has a given name – perhaps Robert
Roe – and many noun phrases describe him – star center on the high school team.

• A signifier can signify more than one thing. For example, the address 123 Maple
probably occurs dozens of times in the United States. There is a place in New
Jersey where one River Road crosses another and distinct River Road. Common
nouns also can signify different things; tree can apply to both an oak outside the
window and a data structure inside a program. Table has the same possibility;
a sql statement about a table could be written on a table.

• A signifier can link to a signifed thing which is in turn the signifier for a further
signified thing. For example, You should invest in ORCL uses the stock symbol
ORCL to signify the corporate name Oracle Corporation which in turn signifies
the real world entity that is the (notice the lower case, common noun usage)
corporation that builds databases and other computer-y things.

You may not have seen these rules written out before, but you have used them in
both technical work and ordinary life. For example, mathematicians and computer
scientists take great care to define terms exactly; an ideal is not something to believe
in and work for – it is a particular kind of group. A group is not a collection of friends
to have lunch with, but a precise abstraction of some common ideas from algebra.
Similarly a tree or a table is not made of wood and a column does not hold up the
office building. These terms of art are specialized signifiers when used in specialized
contexts. A legal contract may have language like the moving party hereinafter known
as the plaintiff or the estate means henceforth all real and personal properties. These
phrases establish links between signifier and signified for the purpose of one document.

An old (funny?) linguistics joke illustrates signifiers. Someone says
There are six letters in Boston.

2Erwin’s book has a good short description of signifies/signfied. Martin Erwin, Once Upon an
Algorithm: How Stories Explain Computing, MIT Press, 2017,

5

Probably a false statement because likely there are thousands of envelopes delivered
by snail mail every day in a large city like Boston. But we might have misheard

There are six letters in “Boston”.
which is undeniably and absolutely true3. What is the difference between the two
versions? In the first, the word Boston is unquoted and so is a signifier for the city
of Boston. In the second version, the word “Boston” is quoted and so signifies the
English proper noun which is the name of that Massachusetts city. The proper noun
certainly is written with six letters and this makes the statement true. The noun
letters signifies one thing in the first sentence – envelopes with paper inside – and
another in the second – elements of the Latin alphabet. Apparently linguists also
enjoy very bad puns.

3 Platonic Programming

After we came out of the
church, we stood talking for
some time together of Bishop
Berkeley’s ingenious sophistry
to prove the non-existence of
matter, and that every thing in
the universe is merely ideal. I
observed, that though we are
satisfied his doctrine is not
true, it is impossible to refute
it. I never shall forget the
alacrity with which Johnson
answered, striking his foot with
mighty force against a large
stone, till he rebounded from it,
“I refute it THUS.”

The life of Samuel Johnson,
Vol. 1, James Boswell

Consider the integer 19. What, exactly, is it? Is it the digits 19 – in other words,
the decimal notation for the integer? Perhaps it is 0x13, 0b10011, or 023 – all C

3This joke works in spoken English but gives itself away in written English.

6

notations. Or then again, perhaps 213, 1217, or 211.11 . . .e?4 How about XIX or
xviiii? Or nineteen or devetnaest (Croatian) or diecinueve (Spanish) or neunzehn
(German)? These cannot all be the integer also known as 19. Indeed, each reader will
see a different version of what is written here, entirely new instances and configurations
of ink or pixels. If any one of these is 19, what are all the others?

Socrates, in Plato’s The Allegory Of The Cave, proposes a solution: what we
perceive is not the “real” thing, only a flickering shadow. There are ideal things
humans strive to apprehend, but only approximate apprehensions are available to
us. We can appreciate finer and finer detail, but the ideal object is never completely
understood. This may excessively obscure for ordinary objects like stones, roast beef
sandwiches, and supersonic jet planes, but for mathematical objects, this ideal view
makes considerable sense. No human will ever apprehend

√
2 as a fully written out

decimal number. But we all believe
√

2 exists and we all think that use of
√

2 in a
proof, say, refers to the same number as the root of the equation x2 = 2. Although
this is seldom mentioned, most mathematicians seem to be informal Platonists who
believe there is a universe of eternal mathematical objects out there – mathematics is
the physics of this wondrous universe.

This matters because the sql databases and the pl/sql programs which embed
names and identifiers are themselves best thought of as mathematical objects, not
as particular masses of bits on particular computers. Instead, those bits or text files
or programming pads filled with handwritten “programs” are representations of un-
derlying and ideal mathematical objects. Each of the things (identifiers and names
in particular) will have both an abstract existence, permanent and universal, and a
variety of specific representations in particular instances, versions, copies, and memo-
ries on many different computers, printouts, scratch pads, video screens, whiteboards,
conversations, and brains. It isimportant to keep track of the distinction between the
representation of something and the thing itself. Also remember that signifiers and

4Irrational numbers can be the base of a notation. When the base is e, integers will have infinite,
non-repeating decimal expansions.

7

signified can form chains with some links which are representations and some which
are ideal things.

4 Identifiers And Names

That which we call a rose
By any other word would smell
as sweet.

Romeo And Juliet, II, ii.
William Shakespeare

Listing 4.1 show a pl/sql procedure. To be more precise, the text is one possible
representation of the procedure. The Platonic view suggests there are many repre-
sentations of this procedure; somewhere, the ideal procedure lives. This is not the
procedure itself – it is the text of the procedure. This is one signifier among many – an
infinite number – of source code for the signfied procedure. The particular ink marks
or pixels read at the moment are themselves just signifiers of a text which signifies
the procedure.

Listing 4.1: An Example Program
1 procedure Show_Salary i s
2 the_sal p l s _ i n t e g e r ;
3 begin
4 s e l e c t s a l i n t o "THE_SAL" from emp where empno = 23 ;
5 dbms_output . put_l ine (THE_SAL) ;
6 end ;

This all seems pointlessly tedious and academic. Or is it? Philosophy and math-
ematics force examination of details to ensure no hidden assumptions or misunder-
standings are smuggled into an argument. Now that the relationship of physical marks
to text to program to procedure has been noticed, simply saying “the program text”
is fine. If needed, the analysis microscope can turn the magnification higher.

Inside the text, we see some examples of identifiers. sql and pl/sql define
identifiers the same way; the details can be found in the reference manuals. Here is a
complete list of the identifiers found in the program text:

Show_Salary the_sal pls_integer sal "THE_SAL" emp empno dbms_output
put_line THE_SAL

Each identifier is a coherent fragment of the text. The technical name for such a
fragment is token and corresponds roughly to anything that might be a word or
punctuation in a natural language. Because this is not the procedure itself, these

8

identifier tokens are definitely not names. This is the first lesson: identifiers live in
program texts and names live in the ideal sql database.

An identifier signifies a database name so that the program text can specify oper-
ations that manipulate the various named things in the database. A ticket to Boston
is expected to provide physical transportation on a physical device to the physical
city of Boston, not to a six letter word. Similarly, the identifier emp is expected to
provide access to a database table which has the data necessary for the procedure to
execute. sql and pl/sql connect identifiers to names with a specific protocol.

There are two kinds of identifiers.
• Ordinary identifiers start with a letter and continue with letters, digits, or with

the punctuation marks $, _, and #. For example, put_line is an ordinary iden-
tifier.

• Quoted identifiers begin with a double quote ", continue with any characters
except nul, newline, or double quote, and end with a double quote. There must
be at least one character inside the double quotes. For example, "THE(sal)" is
a quoted identifier.

Ordinary identifiers are similar to those found in most programming languages.
But quoted identifiers are the fundamental way to signify names in the Oracle universe.
Here is the rule for quoted identifiers:

The name signified by a quoted identifier is exactly the text surrounded
by the double quotes in the identifier.

Notice that the name does not contain the double quotes. For example, "ab_BDC!!..()fooBoo"
signifies the name ab_BDC!!..()fooBoo. The rule for ordinary identifiers is more com-
plicated.

1. Convert all the alphabetic characters in the identifier to upper case. Leave other
characters untouched.

2. Surround the resulting text with double quotes.
3. Apply the quoted identifier rule to find the signified name.

So the ordinary identifier the_sal transforms to the text THE_SAL and then to the
quoted identifier "THE_SAL". This then signifies the name THE_SAL which is a local
variable in the pl/sql procedure.

The effect of the ordinary identifier rule is that
• the_sal
• THE_SAL
• "THE_SAL"

are distinct identifiers – two ordinary, one quoted – but that they all signify the same
name: THE_SAL. Similarly, the identifier emp could have been written as any one of the
eight ordinary identifiers emp, Emp. eMp, emP, EMp. EmP, eMP, or EMP or as the quoted
identifier "EMP" and they would all have signified the same database table name EMP.
The quoted identifier "emp" signifies the name emp and there probably is no table with
this name. It would not signify the table EMP.

Perhaps the most confusing aspect is that pl/sql and sql names are themselves
represented as sequences of characters just as identifiers in a program text are. This

9

dual use of representation often catches us by surprise. However, we see it commonly
enough: deadbeef may be an unappetizing menu item but deadbeef is a good hexidec-
imal value to put in unused memory when searching for memory access bugs. The
same characters represent quite different things.

sql and pl/sql are often said to be “case insensitive” languages. That is not
quite true. Rather, ordinary identifiers go through the three step dance so they signify
names with only upper case alphabetic characters. Names – like quoted identifiers
– may contain almost any characters. The “case doesn’t matter” idea makes typing
program text easier but is too simple an idea to explain all database behavior and
naming.

It would have been possible to design the Oracle database so it did not allow
all those “fancy” characters in names and so its names were case insensitive. But
the outside world does not live by these rules. Other databases, other programming
languages, other systems all have their own rules for how identifiers and names are
constructed. It is far easier to allow more-or-less arbitrary names in the database at
the cost of a few extra double quote characters when necessary than it is to devise
some transliteration scheme. For day-to-day Oracle programming, ordinary identifiers
work well with low effort. The more powerful quoted identifiers and names with
arbitrary characters cater for the idiosyncrasies of other systems with which Oracle
communicates.

5 Practical Programming

Knowledge is of no value unless
you put it into practice.

Anton Chekhov

In ordinary discussion of sql and pl/sql programs, the identifier/name distinc-
tion seldom causes problems. If something is unclear, a question usually resolves any
confusion. But there are two situations where ambiguity or misuse can cause problems

• In documentation.
• In programs which construct and execute other programs: for example, pl/sql’s

EXECUTE IMMEDIATE statement.
Documentation often says something like “a table name may appear in a WHERE

clause list”. It is true that during execution, the sql statement that has the WHERE
clause may include the name of a table, but in the program text, an identifier must
appear to signify the table name. The statement would be clearer had it read “an

10

identifier that specifies a table may appear . . . ”. In particular, any syntax diagram
that has the entry name should be rewritten with name replaced by identifier. It is
impossible to write a name in program text; names only exist within the database.
Only identifiers may be written in a program text.

Many applications create new program text to be executed sooner or later. The
pl/sql EXECUTE IMMEDIATE statement is expressly designed to create and execute sql
statements on the fly. pl/sql subprograms have arguments that specify some task
and then construct the needed sql. The arguments may specify database objects such
as tables and columns. Programmers are often confused about what is to be supplied
as values for these arguments.

In Listing 5.1 (a repeat of Listing 1.1), the procedure RunIt presumably provides
some information about a column in a table. The column and table are specified
by the formal parameters ColumnID and TableID. If the table is named EMP and the
column is named Salary, which of the calls will work properly?
First Call: The first call is unlikely to work. The actual arguments are the pl/sql

variables emp and Salary. Unless these are both typed varchar2, variable emp
contains a string value such as emp, and Salary contains exactly the string value
"Salary" – notice the value includes the double quotes – the call will fail. The
string value in the first variable could also be EMP or eMP or any of the eight
combinations of letters that make up an identifier for the name EMP.

The first call confuses pl/sql identifiers with sql identifiers. Also, the
EXECUTE IMMEDIATE statement takes a text value for its operand, not identifiers.
The example statement shown shows how the values of the actual arguments are
used to construct the text of a statement to be executed; the pl/sql identifiers
themselves are not magically combined during the string construction to provide
their own text representation as part of the final text. In pl/sql, identifiers
always provide their values.

Second Call: The second call almost works. It correctly provides text values in the
form of string literals for placement in the skeleton EXECUTE IMMEDIATE state-
ment. The first value is one of the eight possible identifiers for a table whose
name is EMP. But the second value ’Salary’ is the text of an identifier for a
column named SALARY, not Salary.

Listing 5.1: A Program Snippet
1 procedure RunIt (TableID varchar2 , ColumnID varchar2) i s
2 . . .
3 begin
4 . . .
5 execute immediate ’ s e l e c t ’ | | ColumnID | | ’ from ’ | | TableID i n t o MyVal ;
6 . . .
7 end ;
8
9 RunIt (emp , Sa lary) ; −− F i r s t c a l l

10 RunIt (’ emp ’ , ’ Salary ’) ; −− Second c a l l
11 RunIt (’ emp ’ , ’ " Sa lary " ’) ; −− Third c a l l
12 RunIt (" emp" , ’ " Sa lary " ’) ; −− Fourth c a l l
13 RunIt (’ "EMP" ’ , ’ " Sa lary " ’) ; −− F i f t h c a l l

11

A probable cause here is the difference between single quotes ’ and double
quotes " in sql and pl/sql. Single quotes delimit and define string literals.
Double quotes similarly bound quoted identifiers. The two usages cannot be
interchanged. The error might arise from a momentary lapse of attention or
from a lack of understanding.

Third Call: The third call will succeed as intended. The first actual argument ’emp’
is the same as in the second call and it will correctly create an identifier which will
signify the table named EMP. The second argument ’"Salary"’ is a string literal
which has the correct text for the quoted identifier "Salary". The single quotes
on the outside create the string literal and the value of that literal includes the
double quotes that for the quoted identifier. The use of both kinds of quotes on
the same value is often a stumbling block for beginning pl/sql programmers.

Fourth Call: The fourth call fails. The second argument is the same as the third
call and will work properly. But the first argument "emp" is simply a pl/sql
quoted identifier. As with the first call, unless that identifier names a pl/sql
variable which happens to have a text value that is an appropriate argument to
create the sql name EMP, the call will fail.

Fifth Call: This call will work. The first argument is a string literal whose value
is "EMP" – exactly what is needed to signify the sql table EMP. And the second
argument is unchanged from the third call so it will also work properly.

An observant reader might have noticed one more problem with the example. The
formal parameter identifiers are TableID and ColumnID. Even though the associated
type is varchar2, a programmer might be misled into thinking that an identifier is a
possible value in pl/sql. It isn’t, of course: only the text of an identifier can be a
value. Misnaming of formal parameters is a subtle and pernicious way to encourage
programming mistakes. There are many instances of poor parameter naming choices
throughout Oracle supplied library code and, no doubt, in application code as well.
A better naming choice might have been TableIDText and ColumnIDText or perhaps
TableText and ColumnText.

6 Finale: In Wonderland

Morrissey writes wonderful
song titles, but sadly he often
forgets to write the song.

Elvis Costello

12

The distinction between names and things and the distinction between signifiers
and significand has occupied philosophers at least since Socrates. Lewis Carroll gives
us a wonderful example.

“You are sad”, the Knight said in an anxious tone: “let me sing you a
song to comfort you.”

“Is it very long?” Alice asked, for she had heard a good deal of poetry
that day.

“It’s long,” said the Knight, “but it’s very, very beautiful. Everybody
that hears me sing it - either it brings the tears into their eyes, or else -”

“Or else what?” said Alice, for the Knight had made a sudden pause.
“Or else it doesn’t, you know. The name of the song is called ’Had-

docks’ Eyes’.”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel

interested.
“No, you don’t understand,” the Knight said, looking a little vexed.

“That is what the name is called. The name really is ’The Aged Aged
Man’.”

“Then I ought to have said ’That’s what the song is called?’” Alice
corrected herself.

“No, you oughtn’t: that’s quite another thing! The song is called ‘Ways
And Means’: but that’s only what it’s called, you know!”

“Well, what is the song, then?” said Alice, who was by this time
completely bewildered.

“I was coming to that,” the Knight said. “The song really is ‘A-sitting
On A Gate’: and the tune’s my own invention.”

The White Knight lists the name of the name of the song as Haddocks’ Eyes, the
name of the song as The Aged Aged Man, what the song is called (another signifier)
Ways And Means, and the song itself is A-sitting On A Gate. Alice was confused but
Oracle programmers need not be. Things are not the same as their representations,
names themselves can be things, names are not the same as the things they signify,
and there can be chains of signifiers. We can hope Alice enjoyed the song as much as
we enjoy our newfound skills with identifiers and names.

Postscript
After this essay was complete and ready for posting, I read Benjamin Dreyer’s style
guide Dreyer’s English: An Utterly Correct Guide to Clarity and Style. In his section
on commas, he reminds us that

We were all thoroughly indoctrinated in grade school to precede or follow
dialogue with a comma. . .

and one example is
Atticus said dryly, “Do not let this inspire you to further glory, Jeremy.”

Dreyer goes on to say

13

. . . this rule does not apply in constructions in which dialogue is preceded
or followed by some version of the word “to be”. . .

His example is
“Happy New Year” is a thing one ought to stop saying after January 8.

Dreyer’s reasoning is
. . . the phrase in question is less dialogue than a noun-in-quote-marks. . .

and this is exactly the point of the lame joke about Boston in Chapter 2 and that the
White Knight is making to Alice.

14

