
“This presentation is for informational purposes only and may not be incorporated into a contract or agreement.”

The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be

incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in

making purchasing decision. The development, release, and timing
of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

Bryn Llewellyn

PL/SQL Product Manager,
Oracle Headquarters

“This presentation is for informational purposes only and may not be incorporated into a contract or agreement.”

What’s new in PL/SQL?

Hear it from the Product
Manager.

And ask its Developers.

Agenda

• Preamble

• The real talk

Preamble #1 –
Ask Oracle’s PL/SQL Team
• They’re here in the room

• We’ll have a Q&A here at the end

• We’ll walk over the road to the OTN lounge

• We can continue there for as long as
you want

Preamble #2 –
Can’t get enough of PL/SQL?

• A two-day conference
packed with intensive
training on the
PL/SQL language

• Six weeks from today
• I’m doing two talks

• Sponsored by O'Reilly Media, Quest Software, and ODTUG
More information available at www.oracleplsqlprogramming.com
And there’s fliers here in this room

Preamble #3 –
Feel free to use these slides
• Do use them to teach your colleagues
• Don’t use them as the primary source of the

material – they have no notes
• Instead, use my accompanying whitepaper
• And study the account in the

Oracle Database Documentation Library

Preamble #4 –
New PL/SQL Features in 10.2

…besides the one that’s
the main subject of this talk !

Utl_Nla
• Provides a PL/SQL API

to a linked-in C implementation
of two of the most popular available libraries
for matrix math: BLAS and LAPACK

select distinct Object_Name from All_Arguments
where Package_Name = 'UTL_NLA'
and Owner = 'SYS'
and (Object_Name like '%BLAS%'or

Object_Name like '%LAPACK%')

• 33 BLAS overloaded subprograms
• 23 LAPACK overloaded subprograms

Dynamic obfuscation

begin
execute immediate q'{

create or replace procedure P is
begin

DBMS_Output.Put_Line (q'[I'm not wrapped]');
end P;

}';
end;

• The problem

• The All_Source view family
shows the source in plain text

DBMS_DDL.Create_Wrapped

begin
DBMS_DDL.Create_Wrapped (q'{

create or replace procedure P is
begin

DBMS_Output.Put_Line (q'[I'm wrapped now]');
end P;

}');
end;

• The solution

• The All_Source view family
now obfuscates the source

DBMS_DDL.Create_Wrapped
select Text from User_Source

where Name = 'P' order by Line

procedure P wrapped
a000000
2
abcd
abcd
...

abcd
abcd
7
5a 92
cxX4swY3RKBC0enZsNOP1N09CC4wg5nnm7+fMr2ywFznaaV0iwmm4Unqv64kfAw1r5X6eFcZ
JCEUyiGiKOOGEHpzcZQhnj2MAD3HlJdt05meCV6Om5vZCz0qO6+jcXNxjuFnWTmmnqZvyA==

DBMS_Output
select Text from All_Source

where Owner = 'SYS'
and Name = 'DBMS_OUTPUT'
and Lower(Text) like '%type%chararr%'

• In 10.1
type chararr is

table of varchar2(255) index by binary_integer;

• In 10.2
type chararr is

table of varchar2(32767) index by binary_integer;

DBMS_Output
CONNECT Usr/p@Rel_10_2

-- Needs the 10.2 SQL*Plus (of course)
SET SERVEROUTPUT ON SIZE UNLIMITED

• This is the default, of course

The real talk…

PL/SQL
Conditional Compilation

Conditional Compilation
• What’s the elevator pitch?

• What’s it good for?

• What does it look like?

• What’s the terminology?

• Use cases & best practices

The elevator pitch
• It’s part of the syntax and semantics

of the PL/SQL language
• Looks very similar to the regular if construct
• Yet it’s dramatically different in its meaning
• It supports many new exciting solutions

to historical programming challenges
• It allows new best practices to be defined

The elevator pitch
• The regular if selects action at run-time
• Conditional compilation selects text at

compile-time
• Unselected text needn’t be legal
• It can select declarations
• It can interrupt regular statements

What’s it good for?
• It lets self-tracing code – and assertions – be

turned on during development and turned off
when the code goes live

• It lets developers prototype alternative
implementations with increased productivity
and reduced risk of error

• It enables new approaches to unit testing
• It gives ISVs new mechanisms for component-

based installation
• It lets ISVs use a single code corpus in

many Oracle Database releases

“We found PL/SQL conditional
compilation functionally complete and
easy to use.

It will allow us to write a more
manageable and faster
implementation for our component-
based architecture.

We intend to use it in our products at
the earliest opportunity.”

— Håkan Arpfors, Senior Software Architect,
IFS,

www.ifsworld.com

“I described the challenge we faced
with unit testing our package-body-
private subprograms to Bryn before I
knew that PL/SQL conditional
compilation was on the way.

Testing is critical to us and I'm excited
to see the new possibilities that this
feature gives us — both for ordinary
unit testing and for the PL/SQL
equivalent of mock objects.”

— Nick Strange, Principal Architect,
Fidelity Brokerage Company Technology,

www.fidelity.com

What does it look like?
if Control.Trace_Level > 0 then

Print(Sparse_Collection.Count());
if Control.Trace_Level > 1 then

declare Idx Idx_t := Sparse_Collection.First();
begin

while Idx is not null loop
Print(Idx||' '||Sparse_Collection(Idx));
Idx := Sparse_Collection.Next(Idx);

end loop;
end;

end if;
end if;

What does it look like?
$if Control.Trace_Level > 0 $then

Print(Sparse_Collection.Count());
$if Control.Trace_Level > 1 $then

declare Idx Idx_t := Sparse_Collection.First();
begin

while Idx is not null loop
Print(Idx||' '||Sparse_Collection(Idx));
Idx := Sparse_Collection.Next(Idx);

end loop;
end;

$end
$end

Hold on…

…there’s more to it.

What can you test?
procedure P is
begin

$if Control.Tracing $then
Print('Tracing');

$end
end P;

package Control is
Tracing constant boolean := true;

end Control;

What about this?

procedure P is
begin

$if Control.Tracing $then
Print('Tracing');

$end
end P;

package Control is
Tracing constant boolean := Sysdate < '22-Sep-05';
...
Var constant pls_integer := Pkg.F(42);

end Control;

No, that would be crazy!
PLS-00174: a static boolean expression must be used

• When a package constant controls what text
is selected for compilation…

• …the selection will never be changed
• …unless the controlling package is

recompiled by hand

• Notice that a dependency is set up

What’s the terminology?
• The conditional compilation construct that

we’ve looked at…

• …loosely speaking, the
compile-time $if construct…

• …is called the selection directive

Is a package the only way
to control it?
• Hmm… It seems a bit heavy-handed to have

to create a partner package for every
compilation unit I want to conditionalize

• Relax… There’s a lightweight way
• Sometimes the lightweight way is better
• Sometimes the package way is better
• We’ll soon see when and why to use which

Lightweight control
alter session set Plsql_CCFlags = ' Tracing:true '
/
create or replace procedure P is
begin

$if $$Tracing $then
Print('Tracing');

$end
end P;
/

select Plsql_CCFlags from
User_Plsql_Object_Settings
where Name = 'P'

/

What’s the terminology?
• $$Tracing is an example of an

inquiry directive
• An inquiry directive gets a value from the

compilation environment
• Think “command line”
• Not only user-defined ccflags like Tracing
• Also pre-defined Plsql_Unit and Plsql_Line
• Also the PL/SQL compilation parameters

like Plsql_Optimize_Level

What about “case not found”?
alter session set Plsql_CCFlags = ' Trace_Level:3 '
/
create procedure P is
begin

$if $$Trace_Level = 0 $then ...;
$elsif $$Trace_Level = 1 $then ...;
$elsif $$Trace_Level = 2 $then ...;
$else $error 'Bad: '||$$Trace_Level $end
$end

end P;
/

PLS-00179: $ERROR: Bad: 3

What’s the terminology?
• $error … $end is the error directive
• And that’s it:

• selection directive
• inquiry directive
• error directive
• static package constant
• static boolean expression
• PL/SQL compilation parameter
• ccflag

How do I know
what got compiled?
procedure P is
begin

$if $$Tracing $then
Print('Tracing');

$else
Print('Not tracing');

$end
end P;

DBMS_Preprocessor

alter procedure P compile
Plsql_CCFlags = 'Tracing:true' reuse settings

/
begin

DBMS_Preprocessor.Print_Post_Processed_Source(
Schema_Name => 'USR',
Object_Type => 'PROCEDURE',
Object_Name => 'P');

end;
/

DBMS_Preprocessor

alter procedure P compile
Plsql_CCFlags = 'Tracing:null' reuse settings

/
begin

DBMS_Preprocessor.Print_Post_Processed_Source(
Schema_Name => 'USR',
Object_Type => 'PROCEDURE',
Object_Name => 'P');

end;
/

DBMS_Preprocessor shows…

procedure P is
begin

Print('Tracing');

end P;

DBMS_Preprocessor shows…

procedure P is
begin

Print('Not tracing');

end P;

What if a ccflag is not defined?
alter session set Plsql_CCFlags = ''
/
alter session set Plsql_Warnings = 'Enable:All'
/
create or replace procedure P is
begin
$if $$Tracing $then

Print('Tracing');
$else

Print('Not tracing');
$end

end P;
/

SHOW ERRORS
begin P(); end;
/

What if a ccflag is not defined?
• You get a warning

PLW-06003: unknown inquiry directive '$$TRACING'

• It evaluates to null
Not tracing

• This is very useful – remember it for later

And now,
on to the use cases…

Tracing and assertions
• For many, the defining use case for

conditional compilation
• Assertions can… be a form of documentation: they can

describe the state the code expects to find before it runs
(its preconditions), and the state the code expects to result
in when it is finished running (postconditions). Assertions
are also sometimes placed at points the execution is not
supposed to reach.

• The removal of assertions from production code is almost
always done automatically. It usually is done via conditional
compilation.

• en.wikipedia.org/wiki/Assertion_(computing)

Tracing and assertions
• Tracing outputs information to help you get

your program correct
• Assertions ensure – without output – that your

program state is correct at critical points in the
execution flow (else abort)

• Similar because you want each enabled at
development time and disabled when the
code goes live

• You use conditional compilation in the same
way for both

Tracing needs its own support
for j in 1..Records.Last() loop
$if $$Tracing $then
Tracing_Counter := Tracing_Counter + 1;
if Tracing_Counter > $$Tracing_Step then
Show_Record(Records(j));
Show_Status(Ok(Records(j)));
Tracing_Counter := 0;

end if;
$end

if Ok(Records(j)) then
...

end if;
end loop;

Tracing needs its own support
procedure P is
...
$if $$Tracing $then
Tracing_Counter pls_integer := 0;

$end
...
$if $$Tracing $then
procedure Show_Record(i in Rt) is
begin ... end Show_Record;

procedure Show_Status(i in boolean) is
begin ... end Show_Status;

$end
begin

Unit testing of body-private
subprograms
• Many programmers believe that it’s not

sufficient just to let body-private helpers be
tested implicitly as a side-effect of testing the
package’s public API

• They have been forced to declare would-be
private subprograms in the package spec

• This causes problems

Unit testing of body-private
subprograms
• Conditional compilation gives you two new

approaches to choose between

• You can conditionally expose the private
subprograms for external testing

• You can write all the tests inside the package,
guard them all with selection directives, and
expose them all conditionally via a single
Run_The_Tests() procedure

Expose your privates…
package body Pkg is
procedure P1(...) is ... end P1;
...
procedure Helper1(...) is ... end Helper1;
...
procedure Helper1_(...) is
begin
$if $$Testing $then
Helper1(...);

$else
raise Program_Error;

$end
end Helper1_;
...

end Pkg;

…via a conditionally usable
wrapper in the spec

package Pkg is
procedure P1(...);
...
procedure Helper1_(...);
...

end;

Encapsulate the testing…
package body Pkg is
procedure P1(...) is ... end P1;
...
procedure Helper1(...) is ... end Helper1;
...

procedure Run_The_Tests(...) is
begin
$if $$Testing $then
P1(...);
Helper1(...);
...

$else
raise Program_Error;

$end
end Run_The_Tests;

end Pkg;

…and expose it – conditionally
usable – in the spec

package Pkg is
procedure P1(...);
...
procedure Run_The_Tests(...);

end;

Encapsulating the testing
• Allows the testing code to set up body-private

state
• Allows the unit testing of arbitrarily deeply

nested inner subprograms, e.g. Deep_P()
• These aren’t visible in an outer scope
• Therefore, write its test at the same nesting

level as Deep_P() — guarded, of course, by a
selection directive

• Provide a conditionally guarded path to invoke
the test from Run_The_Tests()

Mock objects
• Borrowing the term from object-oriented

programming as a mnemonic for the current
use case

• It denotes a paradigm for unit testing
• In tests, a mock object behaves exactly like a real object

with one crucial difference: the programmer will hard-code
return values for its methods...

• en.wikipedia.org/wiki/Mock_Object

Mock objects
• Subprogram To_Be_Tested() calls Callee()
• To_Be_Tested() must behave correctly in

response to N distinct legal “patterns”
returned by Callee() and in reponse to M
documented possible exceptions

• Callee()’s response depends normally on
complex inter-relationships in persistently
stored data

• It’s too hard – and unreliable – to mock up the
data to trigger all N responses and M
exceptions

Mock objects
• So instead we simply mock up each distinct

response type that Callee() can produce
• We do this in Callee() itself
• We use conditional compilation to select the

desired mock response or the normal
production implementation

• Notice that I don’t need to show you any code
to explain the value of PL/SQL conditional
compilation in this use case – and the best
practice that is now newly supported

Prototyping
• You often realize that more than one

approach to the design of a subprogram will
result in its correct behavior

• Sometimes the alternative approaches result
in source code versions which are textually
largely the same but which differ critically in
small areas distributed fairly evenly thought
the source

Prototyping
• For example,

index by pls_integer vs index by varchar2
• the declarations differ
• some of the assignments might differ
• The idiom for traversal is the same

declare Idx Idx_t := Sparse_Collection.First();
begin
while Idx is not null loop
...
Idx := Sparse_Collection.Next(Idx);

end loop;
end;

Prototyping
• PL/SQL conditional compilation allows all the

approaches to be coded in a single source
text…

• …of course, only while they are
being evaluated

• It thereby eliminates the risk of carelessly
introduced unintended differences

Spanning different releases
of Oracle Database
with a single
source code corpus
• Each new release of Oracle Database brings

new functionality in PL/SQL and in SQL along
with new syntax for it

• Code which use a new feature won’t compile
in earlier releases because of the new syntax

• ISVs typically maintain only a single source
code corpus

Single code corpus spanning
many releases of Oracle
• So PL/SQL code – and the SQL it contains –

is written to compile in the earliest release of
Oracle Database that the ISV supports

• New features are not taken advantage of until
usually two releases of Oracle Database after
their introduction

• Customers of the ISV who do use the latest
release of Oracle Database are penalized by
the procrastination of those who do not

Spanning Oracle releases
$if DBMS_Db_Version.Ver_LE_9_2 $then
declare k Index_t := 1; j Index_t := Sparse.First();
begin

while j is not null loop
Dense(k) := Sparse(j);
j := Sparse.Next(j);
k := k + 1;

end loop;
end;
forall j in 1..Dense.Last()

insert into Tbl values Dense(j);

$else
forall j in indices of Sparse

insert into Tbl values Sparse(j);

$end

Won’t compile
before 10.1

Hang on… this is paradoxical !
• PL/SQL conditional compilation is new in 10.2
• But the slide shows its use in 9.2 !
• Yes, well… it was just a technique to show the

potential value of conditional compilation in
this use case

• It’s a latent benefit: ISVs won’t enjoy it until
the next but one release after 10.2

• Sad, eh? ‘Specially ‘cos this use case
motivated the feature !

Actually, I lied
• We did a ton of work to build this feature…
• …to satisfy a strongly voiced enhancement

request
• It would’ve been crazy to ask folks to tolerate

that level of deferred gratification that the last
slide implied

• So we made conditional compilation available
in 10.1.0.4…

• …and in 9.2.0.6
• There are some functionality restrictions

Relax…
• In 9.2.0.6 it’s disabled. You have to use an

underscore parameter to enable it
• In 10.1.0.4 – while it is enabled by default –

you can disable it by using the same
underscore parameter

• In 10.2 this underscore parameter is obsolete
• You can set the underscore parameter only

under the guidance of Oracle Support
• This will be allowed only for the ISV release

spanning use case

Use a ccflag when…

• You’re selecting code you want at
development time and don’t want
in production (e.g. tracing and assertions)

• You want to control the conditionalization of
just one compilation unit

• Rely on the fact that an undefined flag
evaluates to null to write the test

Use a pkg constant when…

• You want different conditionalizations at
different installation sites or at different times
at the same site

• Something in the environment can be used to
recompile the controlling package with
appropriate [new] values of the controlling
constants

The whitepaper

• I submitted just the abstract for the
OpenWorld proceedings

• This provides a link to the whitepaper’s
canonical location

• I can revise it periodically
• It’s there now – here’s a lightning tour
• I’ll wire up the OTN navigation ASAP
• Read it!

Q U E S T I O N SQ U E S T I O N S
A N S W E R SA N S W E R S

	Agenda
	Preamble #1 –Ask Oracle’s PL/SQL Team
	Preamble #2 –Can’t get enough of PL/SQL?
	Preamble #3 –Feel free to use these slides
	Preamble #4 –New PL/SQL Features in 10.2
	Utl_Nla
	Dynamic obfuscation
	DBMS_DDL.Create_Wrapped
	DBMS_DDL.Create_Wrapped
	DBMS_Output
	DBMS_Output
	The real talk…
	Conditional Compilation
	The elevator pitch
	The elevator pitch
	What’s it good for?
	What does it look like?
	What does it look like?
	What can you test?
	What about this?
	No, that would be crazy!
	What’s the terminology?
	Is a package the only wayto control it?
	Lightweight control
	What’s the terminology?
	What about “case not found”?
	What’s the terminology?
	How do I knowwhat got compiled?
	DBMS_Preprocessor
	DBMS_Preprocessor
	DBMS_Preprocessor shows…
	DBMS_Preprocessor shows…
	What if a ccflag is not defined?
	What if a ccflag is not defined?
	Tracing and assertions
	Tracing and assertions
	Tracing needs its own support
	Tracing needs its own support
	Unit testing of body-private subprograms
	Unit testing of body-private subprograms
	Expose your privates…
	…via a conditionally usable wrapper in the spec
	Encapsulate the testing…
	…and expose it – conditionally usable – in the spec
	Encapsulating the testing
	Mock objects
	Mock objects
	Mock objects
	Prototyping
	Prototyping
	Prototyping
	Spanning different releasesof Oracle Databasewith a singlesource code corpus
	Single code corpus spanningmany releases of Oracle
	Spanning Oracle releases
	Hang on… this is paradoxical !
	Actually, I lied
	Relax…
	Use a ccflag when…
	Use a pkg constant when…
	The whitepaper

