ORACLE

“This presentation is for informational purposes only and may not be incorporated into a contract or agreement.”

The following is intended to outline our general product direction. It
is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in
making purchasing decision. The development, release, and timing
of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

THE COMPANY

ORACLE

“This presen

Bryn Llewellyn

PL/SQL Product Manager,
Oracle Headquarters

ORACLE

tation is for informational purposes only and may not be incorporated into a contract or agreement.”

What’s new in PL/SQL?

Hear i1t from the Product
Manager.

And ask Its Developers.

ORACLE

Agenda

Preamble

The real talk

ORACLE

Preamble #1 —
Ask Oracle’'s PL/SQL Team

They’re here in the room
We'll have a Q&A here at the end
We'll walk over the road to the OTN lounge

We can continue there for as long as
you want

ORACLE

Preamble #2 —
Can’t get enough of PL/SQL?

A two-day conference
packed with intensive
training on the
PL/SQL language

Six weeks from today |SitsidE

NOVEMBER 2-3

I) m d OI n g tWO tal kS QPP2005: a conference for Oracle technologists

whao use PL/SQL to get their jobs done

Sponsored by O'Reilly Media, Quest Software, and ODTUG
More information available at www.oracleplsglprogramming.com
And there’s fliers here in this room

ORACLE

Preamble #3 —
Feel free to use these slides

Do use them to teach your colleagues

Don’t use them as the primary source of the
material — they have no notes

Instead, use my accompanying whitepaper

And study the account in the
Oracle Database Documentation Library

ORACLE

Preamble #4 —
New PL/SQL Features in 10.2

...besides the one that’s
the main subject of this talk !

ORACLE

Utl Nla

Provides a PL/SQL API

to a linked-in C implementation

of two of the most popular available libraries
for matrix math: BLAS and LAPACK

select distinct Object Name from All_Arguments

where Package Name = "UTL_NLA*"
and Owner = "SYS*

and (Object Name like "%BLAS%"or
Object Name like "%LAPACK%")

33 BLAS overloaded subprograms
23 LAPACK overloaded subprograms

ORACLE

Dynamic obfuscation

The problem

begin
execute 1mmediate - {
create or replace procedure P 1s
begin
DBMS Output.Put Line (q"[1"m not wrapped]”);
end P;
)

end;

The All_Source view family
shows the source In plain text

ORACLE

DBMS DDL.Create Wrapped

The solution

begin
DBMS DDL.Create Wrapped (q"{
create or replace procedure P 1s
begin
DBMS Output.Put Line (q"[1"m wrapped now]");
end P;
3)s

end;

The All_Source view family
now obfuscates the source

ORACLE

DBMS DDL.Create Wrapped

select Text from User_Source
where Name = "P" order by Line

procedure P wrapped

a000000
2

abcd
abcd

abcd

abcd

2

5a 92
cxX4swY3RKBC0enZsNOP1NO9CC4wg5nnm7+FMr2ywFznaaVOiwmm4Unqv64kFAwlr5X6eFcZ
JCEUy1Gi1KOOGEHpzcZQhnj2MAD3HIJdt05meCV60m5vZCz0q06+ j cXNXJuFnWTmmngZvyA==

ORACLE

DBMS Output

select Text from All _Source
where Owner = "SYS*
and Name = "DBMS OUTPUT"
and Lower(Text) like "%type%chararr%”

In 10.1

type chararr 1s
table of varchar2(255) i1ndex by binary_ integer;

In 10.2

type chararr 1s
table of varchar2(32767) i1ndex by binary_ integer;

ORACLE

DBMS_ Output

CONNECT Usr/p@Rel 10 2

-—- Needs the 10.2 SQL*Plus (of course)
SET SERVEROUTPUT ON SIZE UNLIMITED

This Is the default, of course

ORACLE

The real talk...

PL/SQL
Conditional Compilation

ORACLE

Conditional Compilation

What's the elevator pitch?
What's it good for?

What does it look like?
What's the terminology?

Use cases & best practices

ORACLE

The elevator pitch

It’s part of the syntax and semantics
of the PL/SQL language

Looks very similar to the reqgular If construct
Yet it's dramatically different in its meaning

It supports many new exciting solutions
to historical programming challenges

It allows new best practices to be defined

ORACLE

The elevator pitch

The reqgular if selects action at run-time

Conditional compilation selects text at
compile-time

Unselected text needn’t be legal
It can select declarations
It can interrupt regular statements

ORACLE

What’s it good for?

It lets self-tracing code — and assertions — be
turned on during development and turned off
when the code goes live

It lets developers prototype alternative
Implementations with increased productivity
and reduced risk of error

t enables new approaches to unit testing

t gives ISVs new mechanisms for component-
pased installation

t lets ISVs use a single code corpus in
many Oracle Database releases

ORACLE

“We found PL/SQL conditional
compilation functionally complete and
easy to use.

It will allow us to write a more
manageable and faster
Implementation for our component-
based architecture.

We intend to use it in our products at
the earliest opportunity.”

— Hakan Arpfors, Senior Software Architect,

IFS,
www.ifsworld.com
ORACLE

“I described the challenge we faced
with unit testing our package-body-
private subprograms to Bryn before |
knew that PL/SQL conditional
compilation was on the way.

Testing is critical to us and I'm excited
to see the new possibilities that this
feature gives us — both for ordinary
unit testing and for the PL/SQL
equivalent of mock objects.”

— Nick Strange, Principal Architect,
Fidelity Brokerage Company Technology,

www.fidelity.com
ORACLE

What does it look like?

iIT Control.Trace Level > 0 then
Print(Sparse_Collection.Count());
iIf Control.Trace Level > 1 then
declare 1dx Idx _t := Sparse Collection.First();
begin
while Idx 1s not null loop
Print(1dx]|]" "||Sparse Collection(ldx));
Idx :-= Sparse Collection._Next(ldx);
end loop;
end;
end 1T;
end 1T;

ORACLE

What does it look like?

$if |Control.Trace Level > 0 [$then
Print(Sparse_Collection.Count());
$if|Control.Trace Level > 1 |$then
declare 1dx Idx _t := Sparse Collection.First();
begin
while Idx 1s not null loop
Print(ldx] | "||Sparse_Collection(ldx));
Idx :-= Sparse Collection.Next(l1dx);
end loop;
end;
$end
$end

ORACLE

Hold on...

...there’s more to It.

ORACLE

What can you test?

procedure P 1s
begin
$if Control JTracing|$then
Print("Tracing”);
$end
end P;

package Control 1s
Tracing |constant |boolean := true;
end Control;

ORACLE

What about this?

package Control 1s
Tracing constant boolean :=|Sysdate < "22-Sep-057;

Var constant pls iInteger := Pkg.F(42);
end Control;

procedure P 1s
begin
$if Control JTracing|$then
Print("Tracing”);
$end
end P;

ORACLE

No, that would be crazy!

PLS-00174: a|static boolean expression|must be used

When a package constant controls what text
IS selected for compilation...

...the selection will never be changed

...unless the controlling package is
recompiled by hand

Notice that a dependency Is set up

ORACLE

What’s the terminology?

The conditional compilation construct that
we’ve looked at...

...loosely speaking, the
compile-time $if construct...

...Is called the selection directive

ORACLE

Is a package the only way
to control it?

Hmm... It seems a bit heavy-handed to have
to create a partner package for every
compilation unit | want to conditionalize

Relax... There’s a lightweight way
Sometimes the lightweight way Is better
Sometimes the package way Is better
We’ll soon see when and why to use which

ORACLE

Ligh

alter
V4

create or replace procedure P 1s

begin

tweight control

session set |PIsql CCFlags

$if

$$Tracing|$then

Pr

$end

end P;
4

select

int("Tracing”);

PIsgql CCFlags| from

User PlIsgl Object Settings

wher
/

e Name = "P*

Tracing:true

ORACLE

What’s the terminology?

$$Tracing is an example of an
Inquiry directive

An inquiry directive gets a value from the
compilation environment

Think “command line”
Not only user-defined ccflags like Tracing
Also pre-defined Plsgl_Unit and Plsqgl_Line

Also the PL/SQL compilation parameters
like Plsgl Optimize_ Level

ORACLE

What about “case not found” ?

alter session set PIsqgl CCFlags = " Trace Level:3 ™

/

create procedure P 1s

begin
$if $$Trace Level = 0 $then ...;
$elsit $$Trace Level = 1 $then ...;
$elsit $$Trace Level = 2 $then ...;
$else |$error "Bad: "||$$Trace Level $end
$end

end P;

/

PLS-00179: $ERROR: Bad: 3

ORACLE

What’s the terminology?

$error ... $end is the error directive

And that’s it:
« selection directive
 Inquiry directive
e error directive
e static package constant
 static boolean expression
e PL/SQL compilation parameter
« ccflag

ORACLE

How do | know
what got compiled?

procedure P 1s
begin
$if $$Tracing $then
Print("Tracing”);
$else
Print("Not tracing”);
$end
end P;

ORACLE

DBMS Preprocessor

alter procedure P compile
Plsgl CCFlags = "Tracing:true” |reuse settings
4
begin
DBMS Preprocessor.Print_Post Processed Source(
Schema Name => "USR",
Object Type => "PROCEDURE",
Object Name => "P");
end;
/

ORACLE

DBMS Preprocessor

alter procedure P compile
Plsgl CCFlags = "Tracing:null® | reuse settings
4
begin
DBMS Preprocessor.Print_Post Processed Source(
Schema Name => "USR",
Object Type => "PROCEDURE",
Object Name => "P");
end;
/

ORACLE

DBMS Preprocessor shows...

DBMS_ Preprocessor shows...

What if a ccflag Is not defined?

alter session set Plsgl CCFlags =
4

alter session set PlIsgl Warnings = "Enable:All"
/

create or replace procedure P 1s
begin
$if $$Tracing $then
Print("Tracing”);
$else
Print("Not tracing®);
$end
end P;
4
SHOW ERRORS
begin P(Q); end;
/
ORACLE

What if a ccflag is not defined?

You get a warning

PLW-06003: unknown inquiry directive "$$TRACING*®

It evaluates to null

Not tracing

This Is very useful — remember it for later

ORACLE

And now,
on to the use cases...

ORACLE

Tracing and assertions

For many, the defining use case for
conditional compilation

e Assertions can... be a form of documentation: they can
describe the state the code expects to find before it runs
(its preconditions), and the state the code expects to result
in when it is finished running (postconditions). Assertions
are also sometimes placed at points the execution is not
supposed to reach.

 The removal of assertions from production code is almost
always done automatically. It usually is done via conditional
compilation.

en.wikipedia.org/wiki/Assertion_(computing)

ORACLE

Tracing and assertions

Tracing outputs information to help you get
your program correct

Assertions ensure — without output — that your
program state Is correct at critical points in the
execution flow (else abort)

Similar because you want each enabled at
development time and disabled when the
code goes live

You use conditional compilation in the same
way for both

ORACLE

Tracing needs its own support

for jJ In 1. _Records.Last() loop

$if $$Tracing $then
Tracing_Counter |:= Tracing_Counter + 1;
if Tracing_Counter > $$Tracing Step then
Show Record(Records(j));
Show_ Status((Ok(Records(})));
Tracing_Counter := 0O;

end 1T;
$end

iIT Ok(Records(j)) then

end i1f;
end loop;

ORACLE

Tracing needs its own support

procedure P 1s

$if $$Tracing $then
Tracing Counter pls_integer := 0;
$end

$if $$Tracing $then

procedure Show Record(i in Rt) 1s
begin ... end Show Record;

procedure Show Status(i in boolean) is
begin ... end Show Status;

$end
begin

ORACLE

Unit testing of body-private
subprograms

Many programmers believe that it’s not
sufficient just to let body-private helpers be
tested implicitly as a side-effect of testing the

package’s public API
They have been forced to declare would-be
private subprograms in the package spec

This causes problems

ORACLE

Unit testing of body-private
subprograms

Conditional compilation gives you two new
approaches to choose between

You can conditionally expose the private
subprograms for external testing

You can write all the tests inside the package,
guard them all with selection directives, and
expose them all conditionally via a single
Run_The Tests() procedure

ORACLE

Expose your privates...

package body Pkg is
procedure P1(...) iIs ... end P1;

procedure Helperl{(...) is ... end Helperl;

procedure Helperl (...) 1s
begin

$if $$Testing $then
Helperl((-..);

$else

raise Program Error;

$end

end Helperl ;

end Pkg;
ORACLE

...via a conditionally usable
wrapper in the spec

package Pkg 1s
procedure P1(...);

procedure Helperl (...);

end;

ORACLE

Encapsulate the testing...

package body Pkg is
procedure P1(...) iIs ... end P1;

procedure Helperl(...) i1s ... end Helperl;

procedure Run_The Tests(...) 1s

begin
$if $$Testing $then
P1(--.);
Helperl(...);
$else
raise Program Error;
$end
end Run_The Tests;
end Pkg;

ORACLE

...and expose It — conditionally
usable —In the spec

package Pkg 1s
procedure P1(...);

procedure Run_The_Tests|(...);
end;

ORACLE

Encapsulating the testing

Allows the testing code to set up body-private
State

Allows the unit testing of arbitrarily deeply
nested inner subprograms, e.g. Deep P()

These aren’t visible in an outer scope

Therefore, write its test at the same nesting

level as Deep P() — guarded, of course, by a
selection directive

Provide a conditionally guarded path to invoke
the test from Run_The Tests()

ORACLE

Mock objects

Borrowing the term from object-oriented
programming as a mnemonic for the current

use case
It denotes a paradigm for unit testing

* In tests, a mock object behaves exactly like a real object
with one crucial difference: the programmer will hard-code
return values for its methods...

en.wikipedia.org/wiki/Mock Object

ORACLE

Mock objects

Subprogram To_Be Tested() calls Callee()

To_Be Tested() must behave correctly In
response to N distinct legal “patterns”
returned by Callee() and in reponse to M
documented possible exceptions

Callee()’s response depends normally on
complex inter-relationships in persistently
stored data

It's too hard — and unreliable — to mock up the
data to trigger all N responses and M

exceptions
ORACLE

Mock objects

So instead we simply mock up each distinct
response type that Callee() can produce

We do this in Callee() itself

We use conditional compilation to select the
desired mock response or the normal
production implementation

Notice that | don’t need to show you any code
to explain the value of PL/SQL conditional
compilation in this use case — and the best
practice that is now newly supported

ORACLE

Prototyping

You often realize that more than one
approach to the design of a subprogram will
result In Its correct behavior

Sometimes the alternative approaches result
In source code versions which are textually
largely the same but which differ critically in
small areas distributed fairly evenly thought
the source

ORACLE

Prototyping

For example,
Index by pls_integer vs index by varchar2
e the declarations differ
e some of the assignments might differ
 The idiom for traversal is the same
declare ldx ldx _t := Sparse_Collection.First();

begin
while 1dx 1s not null loop

Idx = Sparse_Collection.Next(ldx);
end loop;
end;

ORACLE

Prototyping

PL/SQL conditional compilation allows all the
approaches to be coded in a single source
text...

...0f course, only while they are
being evaluated

It thereby eliminates the risk of carelessly
iIntroduced unintended differences

ORACLE

Spanning different releases
of Oracle Database

with a single

source code corpus

Each new release of Oracle Database brings
new functionality in PL/SQL and in SQL along
with new syntax for it

Code which use a new feature won’t compile
In earlier releases because of the new syntax

ISVs typically maintain only a single source
code corpus

ORACLE

Single code corpus spanning
many releases of Oracle

So PL/SQL code — and the SQL it contains —
IS written to compile in the earliest release of
Oracle Database that the ISV supports

New features are not taken advantage of until
usually two releases of Oracle Database after
their introduction

Customers of the ISV who do use the latest
release of Oracle Database are penalized by
the procrastination of those who do not

ORACLE

Spanning Oracle releases

$i1f

DBMS Db Version.Ver LE 9 2|$then

de
be

en
fo

$els

while j

clare k Index t 1; J Index_ t
gin

iIs not null loop
Dense(k) := Sparse(});
J = Sparse.Next(}]);
k := k + 1;
end loop;
d;
rall j
insert

in 1. _.Dense.Last()
into Tbl values Dense(j);

e

= Sparse.First();

fo

rall j
insert

In indices of Sparse
into Tbl values Sparse(j);

Won’t compile
before 10.1

$end

ORACLE

Hang on... this Is paradoxical !

PL/SQL conditional compilation is new in 10.2
But the slide shows its use in 9.2 !

Yes, well... it was just a technique to show the
potential value of conditional compilation in
this use case

It's a latent benefit: ISVs won'’t enjoy it until
the next but one release after 10.2

Sad, eh? ‘Specially ‘cos this use case
motivated the feature !

ORACLE

Actually, I lied

We did a ton of work to build this feature...

...to satisfy a strongly voiced enhancement
request

It would’ve been crazy to ask folks to tolerate
that level of deferred gratification that the last
slide implied

So we made conditional compilation available
in 10.1.0.4...

...and Iin 9.2.0.6

There are some functionality restrictions

ORACLE

Relax...

In 9.2.0.6 it’s disabled. You have to use an
underscore parameter to enable it

In 10.1.0.4 — while it is enabled by default —
you can disable it by using the same
underscore parameter

In 10.2 this underscore parameter is obsolete

You can set the underscore parameter only
under the guidance of Oracle Support

This will be allowed only for the ISV release
spanning use case

ORACLE

Use a ccflag when...

You're selecting code you want at
development time and don’t want
In production (e.g. tracing and assertions)

You want to control the conditionalization of
just one compilation unit

Rely on the fact that an undefined flag
evaluates to null to write the test

ORACLE

Use a pkg constant when...

You want different conditionalizations at
different installation sites or at different times
at the same site

Something in the environment can be used to
recompile the controlling package with
appropriate [new] values of the controlling
constants

ORACLE

The whitepaper

| submitted just the abstract for the
OpenWorld proceedings

This provides a link to the whitepaper’s
canonical location

can revise it periodically

t's there now — here’s a lightning tour
Il wire up the OTN navigation ASAP

Read Iit!

ORACLE

ORACLE

	Agenda
	Preamble #1 –Ask Oracle’s PL/SQL Team
	Preamble #2 –Can’t get enough of PL/SQL?
	Preamble #3 –Feel free to use these slides
	Preamble #4 –New PL/SQL Features in 10.2
	Utl_Nla
	Dynamic obfuscation
	DBMS_DDL.Create_Wrapped
	DBMS_DDL.Create_Wrapped
	DBMS_Output
	DBMS_Output
	The real talk…
	Conditional Compilation
	The elevator pitch
	The elevator pitch
	What’s it good for?
	What does it look like?
	What does it look like?
	What can you test?
	What about this?
	No, that would be crazy!
	What’s the terminology?
	Is a package the only wayto control it?
	Lightweight control
	What’s the terminology?
	What about “case not found”?
	What’s the terminology?
	How do I knowwhat got compiled?
	DBMS_Preprocessor
	DBMS_Preprocessor
	DBMS_Preprocessor shows…
	DBMS_Preprocessor shows…
	What if a ccflag is not defined?
	What if a ccflag is not defined?
	Tracing and assertions
	Tracing and assertions
	Tracing needs its own support
	Tracing needs its own support
	Unit testing of body-private subprograms
	Unit testing of body-private subprograms
	Expose your privates…
	…via a conditionally usable wrapper in the spec
	Encapsulate the testing…
	…and expose it – conditionally usable – in the spec
	Encapsulating the testing
	Mock objects
	Mock objects
	Mock objects
	Prototyping
	Prototyping
	Prototyping
	Spanning different releasesof Oracle Databasewith a singlesource code corpus
	Single code corpus spanningmany releases of Oracle
	Spanning Oracle releases
	Hang on… this is paradoxical !
	Actually, I lied
	Relax…
	Use a ccflag when…
	Use a pkg constant when…
	The whitepaper

