Count the number of bits that are on in an unsigned integer(计算一个无符整数中1Bit的个数)-- (1)

计算一个无符号整数中有多少的Bit为1

原创整理,转载请注明出处。

这是一个经常遇到的经典问题,这里分两个部分讲解和总结,首先对讲解现有的算法,然后再讲解一些改进算法。

 

1.循环法(Iterated Count

int bitcount (unsigned int n)  
{
int count=0;    
    while (n)  {
      count += n & 0x1u ;
      n >>= 1 ;
    }
return count ;
}

最容易理解和想到的方法。对每一位依次判断是否为1,如果是就在count上加1

循环的次数是常数(n的位数)。在1比较稀疏的时候效率低,可用方法2改进。

 

2Bit1稀疏Sparse Ones

int bitcount (unsigned int n)  
{
int count=0 ;
       while (n)  {
       count++ ;
       n &= (n - 1) ;
   }
   return count ;
}

理解这个算法的核心,只需理解2个操作:

  1> 当一个数被减1时,他最右边的那个值为1Bit将变为0,同时其右边的所有的Bit都会变成1
  2>“&=”,位与并赋值操作。去掉已经被计数过的1,并将改值重新设置给n.

这个算法循环的次数是bit位为一的个数。也就说有几个Bit1,循环几次。对Bit1比较稀疏的数来说,性能很好。如:0x1000 0000, 循环一次就可以。

 

3.密集1的算法 Dense Ones

   int bitcount (unsigned int n)    

   {

      int count = 8 \* sizeof(int) ;

      n \^= (unsigned int) -1 ;

      while (n)

      {

         count-- ;

         n &= (n - 1) ;

      }

      return count ;

   }

2稀疏1的算法相类似。不同点是,针对1密集的情况,循环的次数会大大减少。他的循环次数:sizeof(int)-Bit 1的个数。

 

48bit静态表查找法 Precompute_8bit

   static int bits_in_char [256] = {           

    0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2,

    3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3,

    3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,

    4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4,

    3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,

    6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,

    4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5,

    6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5,

    3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3,

    4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6,

6, 7, 6, 7, 7, 8

};


  

  
   int bitcount (unsigned int n)
   {
      // works only for 32-bit ints
      return bits_in_char [n         & 0xffu]
          +  bits_in_char [(n >>  8) & 0xffu]
          +  bits_in_char [(n >> 16) & 0xffu]
          +  bits_in_char [(n >> 24) & 0xffu] ;
   }

使用静态数组表,列出所有8bit(256)无符号数含有Bit1的个数。将32Bit n4部分,直接在表中找到对应的Bit1的个数,然后求和。

这是最快的方法了。缺点是需要比较大的内存。

  

516bit静态表查找法Precompute_16bit

因为在计算64int时,以上方法4并不总是最快,所以有以下的一个进化版,就是用十六Bit的表来作驱动映射。这样需要的内存就更大了。

 static char bits_in_16bits [0x1u << 16] …;

  int bitcount (unsigned int n)
  {
     // works only for 32-bit ints
     return bits_in_16bits [n         & 0xffffu]
         +  bits_in_16bits [(n >> 16) & 0xffffu] ;
  }

 

6. 合并计数器法 Parallel Counter

 unsigned numbits(unsigned int i)

{

  
    unsigned int const MASK1  = 0x55555555;
    unsigned int const MASK2  = 0x33333333;
    unsigned int const MASK4  = 0x0f0f0f0f;
    unsigned int const MASK8  = 0x00ff00ff;
unsigned int const MASK16 = 0x0000ffff;
/\*
MASK1  = 01010101010101010101010101010101
MASK2  = 00110011001100110011001100110011
MASK4  = 00001111000011110000111100001111
MASK8  = 00000000111111110000000011111111
MASK16 = 00000000000000001111111111111111
\*/

  
    
    i = (i&MASK1 ) + (i>>1 &MASK1 );
    i = (i&MASK2 ) + (i>>2 &MASK2 );
    i = (i&MASK4 ) + (i>>4 &MASK4 );
    i = (i&MASK8 ) + (i>>8 &MASK8 );
    i = (i&MASK16) + (i>>16&MASK16);
    
    return i;
}

这个算法是一种合并计数器的策略。把输入数的32Bit当作32个计数器,代表每一位的1个数。然后合并相邻的2个“计数器”,使i成为16个计数器,每个计数器的值就是这2Bit1的个数;继续合并相邻的2个“计数器“,使i成为8个计数器,每个计数器的值就是4Bit1的个数。。依次类推,直到将i变成一个计数器,那么它的值就是32Biti中值为1Bit的个数。

举个例子,假设输入的i值为10010111011111010101101110101111(十进制2541575087

计算过程如下:(共221

1.        32个计数器合并为16,每一个计数器代表 2-bit 1个数

 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 =  1  0  0  1  0  1  1  0  0  0  1  1  1  1  1  1

+0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 =  0  1  1  1  1  1  1  1  1  1  0  1  0  0  1  1

 ----------------------------------------------------------------------

 1 1 1 2 1 2 2 1 1 1 1 2 1 1 2 2 = 01 01 01 10 01 10 10 01 01 01 01 10 01 01 10 10

2.        16个计数器合并为8,每一个计数器代表 4-bit 1个数

 1 1 1 2 1 1 1 2 =   01   01   01   10   01   01   01   10

+1 2 2 1 1 2 1 2 =   01   10   10   01   01   10   01   10

 ---------------   ---------------------------------------

 2 3 3 3 2 3 2 4 = 0010 0011 0011 0011 0010 0011 0010 0100

3.        8个计数器合并为4,每一个计数器代表 8-bit 1个数

 3 3 3 4 =     0010     0011     0010     0010

+2 3 2 2 =     0011     0011     0011     0100

 -------   -----------------------------------

 5 6 5 6 = 00000101 00000110 00000101 00000110

4.        4个计数器合并为2,每一个计数器代表 16-bit 1个数

  5  5 =         00000101         00000101

+ 6  6 =         00000110         00000110

 -----   ---------------------------------

 11 11 = 0000000000001011 0000000000001011

5.        最后,将2个计数器合并为1,每一个计数器代表 32-bit (也就是输入的值i)的1个数

 11 =                 0000000000001011

+11 =                 0000000000001011

 --   --------------------------------

 22 = 00000000000000000000000000010110

 

对于该算法的实现,另外有一种比较好的写法,这种算法避免了使用常数宏,使比较通用的实现:

  #define TWO(c)     (0x1u << (c))
  #define MASK(c)    (((unsigned int)(-1)) / (TWO(TWO(c)) + 1u))
  #define COUNT(x,c) ((x) & MASK(c)) + (((x) >> (TWO(c))) & MASK(c))
  int bitcount (unsigned int n)
  {
     n = COUNT(n, 0) ;
     n = COUNT(n, 1) ;
     n = COUNT(n, 2) ;
     n = COUNT(n, 3) ;
     n = COUNT(n, 4) ;
     /\* n = COUNT(n, 5) ;    for 64-bit integers \*/
     return n ;
  }

下面将讲解一些改进的算法。 

待续。。。

 

参考:

http://www.everything2.com/index.pl?node_id=1181258

http://infolab.stanford.edu/~manku/bitcount/bitcount.html

Comments:

Post a Comment:
Comments are closed for this entry.
About

williamxue

Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today