Awesome disk AFR! Or, is it...

I was hanging out in the ZFS chat room when someone said they were using a new Seagate Barracuda 7200.11 SATA 3Gb/s 1-TB Hard Drive. A quick glance at the technical specs revealed a reliability claim of 0.34% Annualized Failure Rate (AFR).  Holy smokes!  This is well beyond what we typically expect from disks.  Doubling the reliability would really make my day. My feet started doing a happy dance.

So I downloaded the product manual to get all of the gritty details. It looks alot like most of the other large, 3.5" SATA drive specs out there, so far so good. I get to the Reliability Section (section 2.11, page 18) to look for more nuggets.

Immediately, the following raised red flags with me and my happy feet stubbed a toe.

The product shall achieve an Annualized Failure Rate (AFR) of 0.34% (MTBF of 0.7 million hours) when operated in an environment of ambient air temperatures of 25°C. Operation at temperatures outside the specifications in Section 2.8 may increase the product AFR (decrease MTBF). AFR and MTBF are population statistics that are not relevant to individual units.


AFR and MTBF specifications are based on the following assumptions for desktop personal computer environments:
• 2400 power-on-hours per year.
...


Argv! OK, here's what happened. When we design enterprise systems, we use AFR with a 24x7x365 hour year (8760 operation hours/year). A 0.34% AFR using a 8760 hour year is equivalent to an MTBF of 2.5 million hours (really good for a disk). But the disk is spec'ed at 0.7 million hours, which, in my mind is an AFR of 1.25%, or about half as reliable as enterprise disks. The way they get to the notion that an AFR of 0.34% equates to an MTBF of 0.7 million hours is by changing the definition of operation to 2,400 hours per year (300 8-hour days). The math looks like this:

    24x7x365 operation = 8760 hours/year (also called power-on-hours, POH)

    AFR = 100% \* (POH / MTBF)

For an MTBF of 700,000 hours,

    AFR = 100% \* (8760 / 700,000) = 1.25%

or, as Seagate specifies for this disk:

    AFR = 100% \* (2400 / 700,000) = 0.34%

The RAS community has better luck explaining failure rates using AFR rather than MTBF. With AFR you can expect the failures to be a percentage of the population per year. The math is simple and intuitive.  MTBF is not very intuitive and causes all sorts of misconceptions. The lesson here is that AFR can mean different things to different people and can be part of the marketing games people play. For a desktop environment, a large population might see 0.34% AFR with this product (and be happy).  You just need to know the details when you try to compare with the enterprise environments.

Unrecoverable Error on Read (UER) rate is 1e-14 errors/bits read, which is a bit of a disappointment, but consistent with consumer disks.  Enterprise disks usually claim 1e-15 errors/bits read, by comparison. This worries me as the disks are getting bigger because of what it implies.  The product manual says that there is guaranteed to be at least 1,953,525,168 512 byte sectors available.

    Total bits = 1,953,525,168 sectors/disk \* 512 bytes/sector \* 8 bits/byte= 8e12 bits/disk

If the UER is 1e-14 errors/bits read then you can expect an unrecoverable read once every 12.5 times you read the entire disk. Not a very pleasant thought, even if you are using a file system which can detect such errors, like ZFS.  Fortunately, field failure data tends to see a better UER than the manufacturers claim.  If you are worried about this sort of thing, I'll recommend using ZFS.

All-in-all, this looks like a nice disk for desktop use. But you should know that in enterprise environments we expect much better reliability specifications.

Comments:

Post a Comment:
Comments are closed for this entry.
About

relling

Search

Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today