X

Best practices, news, tips and tricks - learn about Oracle's R Technologies for Oracle Database and Big Data

A Data Science Maturity Model for Enterprise Assessment (Part 1)

By: Mark Hornick | Director, Advanced Analytics and Machine Learning

"Maturity models" aid enterprises in understanding their current and target states. Enterprises that already embrace data science as a core competency, as well as those just getting started, often seek a road map for improving that competency. A data science maturity model is one way of assessing an enterprise and guiding the quest for data science nirvana.  

As an assessment tool, this Data Science Maturity Model provides a set of dimensions relevant to data science and 5 maturity levels in each - 1 being the least mature, 5 being the most. Here is my take on important maturity model dimensions with the goal to provide both an assessment tool and potential road map:

  • Strategy - What is the enterprise business strategy for data science?

  • Roles - What roles are defined and developed in the enterprise to support data science activities?

  • Collaboration - How do data scientists collaborate with others in the enterprise, e.g., business analysts, application and dashboard developers, to evolve and hand-off data science work products?

  • Methodology - What is the enterprise approach or methodology to data science?

  • Data Awareness - How easily can data scientists learn about enterprise data resources?

  • Data Access - How do data analysts and data scientists request and access data? How is data access controlled, managed, and monitored?

  • Scalability - Do the tools scale and perform for data exploration, preparation, modeling, scoring, and deployment?

  • Asset Management - How are data science assets managed and controlled?

  • Tools - What tools are used within the enterprise for data science objectives? Can data scientists take advantage of open source tools in combination with high performance and scalable production quality infrastructure?

  • Deployment - How easily can data science work products be placed into production to meet timely business objectives?

In this blog series, I'll discuss each of these dimensions and levels by which business leaders and data science players can assess where their enterprise is, identify where they would like to be, and consider how important each dimension is for the business and overall corporate strategy. Such introspection is a step toward identifying architectures, tools, and practices that can help achieve identified data science goals.

 

Be the first to comment

Comments ( 0 )
Please enter your name.Please provide a valid email address.Please enter a comment.CAPTCHA challenge response provided was incorrect. Please try again.Captcha
Oracle

Integrated Cloud Applications & Platform Services