Java Magazine

Java Magazine

Coding, Java 16, Tools

Simpler object and data serialization using
Java records

ﬁ Julia Boes | January 21, 2022

Chris Hegarty | January 21, 2022

Learn how you can leverage the design of Java’s records to
improve Java serialization.

Record classes enhance Java’s ability to model plain-data aggregates without a lot of coding verbosity or,
in the phrase used in JEP 395, without too much ceremony. A record class declares some immutable state
and commits to an API that matches that state. This means that record classes give up a freedom that
classes usually enjoy—the ability to decouple their API from their internal representation—but in return,
record classes become significantly more concise.

Record classes were a preview feature in Java 14 and Java 15 and became final in Java 16 in JEP 395. Here
is a record class declared in the JDK’s jshell tool.

jshell> record Point (int x, int y) { }
| created record Point

The state of Point consists of two components, x and y. These components are immutable and can be
accessed only via accessor methods x () and y (), which are automatically added to the Point class
during compilation. Also added during compilation is a canonical constructor for initializing the

https://blogs.oracle.com/javamagazine/authors/Blog-Author/CORE8C410948F97C43A4865E2A8515154C01/julia-boes
https://blogs.oracle.com/javamagazine/authors/Blog-Author/CORECACE3BA15FD744549ACADBDF87DAA26E/chris-hegarty
https://www.infoq.com/articles/java-14-feature-spotlight/
https://openjdk.java.net/jeps/395
https://docs.oracle.com/en/java/javase/16/jshell/introduction-jshell.html
https://blogs.oracle.com/javamagazine/category/jm-coding
https://blogs.oracle.com/javamagazine/category/jm-java-16
https://blogs.oracle.com/javamagazine/category/jm-tools
https://www.facebook.com/dialog/share?app_id=209650819625026&href=/javamagazine/post.html
https://twitter.com/share?url=/javamagazine/post.html
https://www.linkedin.com/shareArticle?url=/javamagazine/post.html
https://blogs.oracle.com/javamagazine/post/placeholder.html
https://blogs.oracle.com/
https://blogs.oracle.com/javamagazine/

components. For the Point record class, it is equivalent to the following:

public Point(int x, int y) {
this.x = x;

this.y = y;

}

Unlike the no-argument default constructor added to normal classes, the canonical constructor of a
record class has the same signature as the state. (If an object needs mutable state, or state that is
unknown when the object is created, a record class is not the right choice; you should declare a normal
class instead.)

Here is Point being instantiated and used. In terms of terminology, say that p, the instance of Point,is a
record.

jshell> Point p = new Point (5, 10)
p ==> Point[x=5, y=10]

jshell> System.out.println ("value of x: " + p.x())
value of x: 5

Copy code snippet

Taken together, the elements of a record class form a succinct protocol for you to rely on: The elements
include a concise description of the state, a canonical constructor to initialize the state, and controlled
access to the state. This design has many benefits, such as for object serialization.

What is object serialization?

Serialization is the process of converting an object into a format that can be stored on disk or transmitted
over the network (also termed serialized or marshaled) and from which the object can later be
reconstituted (deserialized or unmarshaled).

Serialization provides the mechanics for extracting an object’s state and translating it to a persistent
format, as well as the means for reconstructing an object with equivalent state from that format. Given
their nature as plain data carriers, records are well suited for this use case.

The idea of serialization is powerful, and many frameworks have implemented it, one of them being Java
Object Serialization in the JDK, which we’ll refer to simply as Java Serialization.

In Java Serialization, any class that implements the java.io.Serializable interface is serializable.
That’s suspiciously simple, right? However, the interface has no members and serves only to mark a class
as serializable.

During serialization, the state of all nontransient fields is scraped (even for private fields) and written to

-~

https://docs.oracle.com/javase/specs/jls/se16/html/jls-8.html#jls-8.8.9
https://docs.oracle.com/en/java/javase/16/docs/specs/serialization/index.html

the serial byte stream. During deserialization, a Supercliass no-argument constructor 1s called to create an
object before its fields are populated with the state read from the serial byte stream. The format of the
serial byte stream (the serialized form) is chosen by Java Serialization unless you use the special methods
writeObject and readObject to specify a custom format.

Problems with Java Serialization

It's not news that Java Serialization has flaws, and Brian Goetz’'s June 2019 blog post, “Towards better
serialization,” provides a summary of the problems.

The core of the problem is that Java Serialization was not designed as part of Java’s object model. This
means that Java Serialization works with objects using backdoor techniques such as reflection, rather
than relying on the API provided by an object’s class. For example, it is possible to create a new
deserialized object without invoking one of its constructors, and data read from the serial byte stream is
not validated against constructor invariants.

Serialization with records

With Java Serialization, a record class is made serializable just like a normal class, simply by implementing
java.io.Serializable

jshell> record Point (int x, int y) implements Serializable { }
| created record Point

Copy code snippet

However, under the hood, Java Serialization treats a record (that is, an instance of a record class) very
differently than an instance of a normal class. (This July 2020 blog post by Chris Hegarty and Alex Buckley
provides a good comparison.) The design aims to keep things as simple as possible and is based on two
properties.

e The serialization of a record is based solely on its state components.
® The deserialization of a record uses only the canonical constructor.
Important note: No customization of the serialization process is allowed for records. That’s by design:

The simplicity of this approach is enabled by, and is a logical continuation of, the semantic constraints
placed on records.

Because a record is an immutable data carrier, a record can only ever have one state, which is the value of
its components. Therefore, there is no need to allow customization of the serialized form.

Similarly, on the deserialization side, the only way to create a record is through the canonical constructor
of its record class, whose parameters are known because they are identical to the state description.

https://cr.openjdk.java.net/~briangoetz/amber/serialization.html
https://inside.java/2020/07/20/record-serialization/

Going back to the sample record class Point, the serialization of a Point object using Java Serialization
looks as follows:

jshell> var out = new ObjectOutputStream(new FileOutputStream("serial.data"))
out ==> java.io.ObjectOutputStream@5f184fco6

jshell> out.writeObject (new Point (5, 10));

jshell> var in = new ObjectInputStream(new FileInputStream("serial.data")):;
in ==> java.io.0ObjectInputStream@504bae78

jshell> in.readObject () ;
$5 ==> Point[x=5, y=10]

Copy code snippet

Under the hood, a serialization framework can use the x () and y () accessors of Point during
serialization to extract the state of p's components, which are then written to the serial byte stream.
During deserialization, the bytes are read from serial.data and the state is passed to the canonical
constructor of Point to obtain a new record.

Overall, the design of records naturally fits the demands of serialization. The tight coupling of the state
and the API facilitates an implementation that is more secure and easier to maintain. Furthermore, the
design allows for some interesting efficiencies of the deserialization of records.

Optimizing record deserialization

For normal classes, Java Serialization relies heavily on reflection to set the private state of a newly
deserialized object. However, record classes expose their state and means of reconstruction through a
well-specified public APl—which Java Serialization leverages.

The constrained nature of record classes drives a re-evaluation of Java Serialization’s strategy of
reflection.

If, as outlined above, the API of a record class describes the state of a record, and since this state is
immutable, the serial byte stream no longer has to be the single source of truth and the serialization
framework doesn’'t need to be the single interpreter of that truth.

Instead, the record class can take control of its serialized form, which can be derived from the
components. Once the serialized form is derived, you can generate a matching instantiator based on that
form ahead of time and store it in the class file of the record class.

In this way, control is inverted from Java Serialization (or any other serialization framework) to the record
class. The record class now determines its own serialized form, which it can optimize, store, and make

available as required.

This control inversion can enhance record deserialization in several ways, with two interesting areas being
class evolution and throughput.

More freedom to evolve record classes. The potential for this arises from an existing well-specified
feature of record deserialization: default value injection for absent stream fields. When no value is present
in the serial byte stream for a particular record component, its default value is passed to the canonical
constructor. The following example demonstrates this with an evolved version of the record class Point:

jshell> record Point (int x, int y, int z) implements Serializable { }
| created record Point

Copy code snippet

After you serialized a Point record in the previous example, the serial.data file contained a
representation of a Point with values for x and y only, not for z. For reasons of compatibility, however,
you might want to be able to deserialize that original serialized object in the context of the new Point
declaration. Thanks to the default value injection for absent field values, this is possible, and
deserialization completes successfully.

jshell> var in = new ObjectInputStream(new FileInputStream("serial.data")):;
in ==> java.io.ObjectInputStream@421lfaabl

jshell> in.readObject () ;
$3 ==> Point[x=5, y=10, z=0]

Copy code snippet

This feature can be taken advantage of in the context of record serialization. If you inject default values
during deserialization, do those default values need to be represented in the serialized form? In this case,
a more compact serialized form could still fully capture the state of the record object.

More generally, this feature also helps support record class versioning, and it makes serialization and
deserialization overall more resilient to changes in record state across versions. Compared with normal
classes, record classes are therefore even more suitable candidates for storing data.

More throughput when processing records. The other interesting area for enhancement is throughput
during deserialization. Object creation during deserialization usually requires reflective API calls, which are
expensive and hard to get right. These two problems can be addressed by making the reflective calls more
efficient and by encapsulating the instantiation mechanics in the record class itself.

For this, you can leverage the power of method handles combined with dynamically computed constants.

The method handle APl in java.lang.invoke was introduced in Java 7 and offers a set of low-level
operations for finding, adapting, combining, and invoking methods/setting fields. A method handle is a
typed reference that allows transformations of arguments and return types and can be faster than
traditional reflection from Java 11, if it's used wisely. In this case, several method handles can be chained
together to tailor the creation of records based on the serialized form of their record class.

This method handle chain can be stored as a dynamically computed constant in the class file of the
record class, which is lazily computed at first invocation.

Dynamically computed constants are amenable to optimizations by the JVM’s dynamic compiler, so the
instantiation code adds only a small overhead to the footprint of the record class. With this, the record
class is now in charge of both its serialized form and its instantiation code, and it no longer relies on other
intermediaries or frameworks.

This strategy further improves performance and code reuse. It also reduces the burden on the
serialization framework, which can now simply use the deserialization strategy provided by the record
class, without writing complex and potentially unsafe mapping mechanisms.

Conclusion

You have seen how serialization can capitalize on the semantic constraints placed on records by the
design of the Java language, and many further potential optimizations can be explored from here. It is
evident that putting a record class in charge of its own serialized form allows Java developers to go further
with record serialization.

Dig deeper
e Java records: Serialization, marshaling, and bean state validation
e Records come to Java

e Why is Java making so many things immutable?

e What are they building—and why? Questions for the top Java architects

Julia Boes

https://blogs.oracle.com/javamagazine/post/diving-into-java-records-serialization-marshaling-and-bean-state-validation
https://blogs.oracle.com/javamagazine/post/records-come-to-java
https://blogs.oracle.com/javamagazine/post/java-immutable-objects-strings-date-time-records
https://blogs.oracle.com/javamagazine/post/what-are-they-buildingand-why-6-questions-for-the-top-java-architects

Julia Boes is an OpenJDK developer in Oracle’s Java Platform Group. She holds a master’s degree in
linguistics and computer science and works in the areas of core libraries, networking, and serialization.

Her other passions are the outdoors, gardening, and sports.

Chris Hegarty

Chris Hegarty (@chegar999) is a principal engineer at Elastic. He was formerly a consulting member of
technical staff and the networking lead of the Java Platform Group at Oracle.

< Previous Post
- w

Resources
for

About
Careers
Developers
Investors
Partners

Startups

© 2022 Oracle

Why Oracle

Analyst
Reports

Best CRM

Cloud
Economics

Corporate
Responsibility

Diversity and
Inclusion

Security
Practices

Site Map

Learn

What is
Customer
Service?

What is ERP?

What is
Marketing
Automation?

What is
Procurement?

What is Talent
Management?

What is VM?

Privacy / Do Not Sell My Info

What's New

Try Oracle
Cloud Free Tier

Oracle
Sustainabillity

Oracle COVID-
19 Response

Oracle and
SailGP

Oracle and
Premier
League

Oracle and Red
Bull Racing
Honda

Cookie Preferences

Next Post »

- w

Contact Us

US Sales
1.800.633.0738

How can we help?

Subscribe to
Oracle Content

Try Oracle Cloud
Free Tier

Events

News

Ad Choices Careers

https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
https://www.oracle.com/legal/privacy/privacy-choices.html
https://www.oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/corporate/careers/
https://blogs.oracle.com/javamagazine/post/curly-braces-java-git-monorepo
https://blogs.oracle.com/javamagazine/post/java-graalvm-polyglot-python-r
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/careers/
https://developer.oracle.com/
https://investor.oracle.com/home/default.aspx
https://www.oracle.com/partner/
https://www.oracle.com/startup/
https://www.oracle.com/corporate/analyst-reports.html
https://www.oracle.com/cx/what-is-crm/
https://www.oracle.com/cloud/economics/
https://www.oracle.com/corporate/citizenship/
https://www.oracle.com/corporate/careers/diversity-inclusion/
https://www.oracle.com/corporate/security-practices/
https://www.oracle.com/cx/service/what-is-customer-service/
https://www.oracle.com/erp/what-is-erp/
https://www.oracle.com/cx/marketing/automation/what-is-marketing-automation/
https://www.oracle.com/erp/what-is-procurement/
https://www.oracle.com/human-capital-management/talent-management/what-is-talent-management/
https://www.oracle.com/cloud/compute/virtual-machines/what-is-virtual-machine/
https://www.oracle.com/cloud/free/?source=:ow:o:h:nav:050120SiteFooter&intcmp=:ow:o:h:nav:050120SiteFooter
https://www.oracle.com/solutions/green/
https://www.oracle.com/corporate/covid-19.html
https://www.oracle.com/sailgp/
https://www.oracle.com/premier-league/
https://www.oracle.com/redbullracing/
tel:18006330738
https://www.oracle.com/corporate/contact/
https://go.oracle.com/subscriptions
https://www.oracle.com/cloud/free/?source=:ow:o:h:nav:050120SiteFooter&intcmp=:ow:o:h:nav:050120SiteFooter
https://www.oracle.com/events/
https://www.oracle.com/news/
https://twitter.com/chegar999
https://www.elastic.co/

