Friday Feb 13, 2015

Demantra Table Reorganization, Fragmentation, Null Columns, Primary Key, Editioning, Cluster Factor, PCT Fee, Freelist, Initrans, Automatic Segment Management (ASM), Blocksize....

Hello All!   Why does Demantra require table reordering and null column movement on a, what seems to be, frequent basis?  Your other apps do not require this type of action.  Can this be explained?   I can give you the following.  Let me know if you have questions.  Thank You!   Jeff

 

Addressing the reason why Demantra requires frequent reordering/reorganization and null column placement, I can explain the reason as follows.  As data is inserted into the Demantra table it will not be in any particular order.  The null columns will be scattered throughout the row.  The main quest is to increase throughput and reduce contention.  Since Demantra is both OLTP and data warehouse the apps DBA must tune accordingly.  Of course EBS and VCP applications have elements of both OLTP and data warehouse but are largely transaction processing at their core.  Applications such as EBS and VCP can typically provide satisfactory response time using typical DBA tuning methods.  Specifically, indexing and proper SQL tuning is plenty to improve and maintain acceptable performance.  However, large tables in data warehouse implementations require unique DBA tuning techniques to reduce IO when accessing the big database tables.  Reducing wait times by eliminating contention is the main goal of table reorganization and the movement of null columns to the end of the row.  The data warehouse requirements of Demantra are no different than other data warehouse applications.

By themselves these are not unique and are implemented in data warehouse applications every day.  For each and every read operation we want to fetch as many relevant rows as possible.  To that end we reorder the large tables according to the PK of each table.  The PK is the main access method to the data according the business requirement.  In the case of Demantra, the PK chosen covers approximately 80% of the data access needed for the main forecasting worksheets.  The rest are addressed using typical DBA tuning methods.  There are new booked, shipped orders inserted into the Demantra world daily, weekly, etc.  When this occurs, the rows naturally loose table/index locality and thus the selectiveness is reduced.  This increases the cluster factor because the number of read operations increases to fetch the desired rows.  The CBO recognizes this and calculates the access method accordingly. 

We want to assist the CBO decision making process as much as possible.  If data was static this effort would be greatly reduced.  Because the Demantra data is dynamic, we need to push the CBO our way to deliver the access plan we desire.  If the table is in Primary Key (PK) order, making your Out of Order Ratio (OOR) low, rows are brought into the SGA in sequential order.  Reducing muli-block reads to process data.  The Cluster Factor (CF) is closely related to OOR.

To review the cluster factor concept, see Demantra Large Database Object Diagnosis and Maintenance Best Practices for Best Performance (Doc ID 1629078.1)

The selectivity of a column value, the db_block_size, the avg_row_len and the cardinality all work together in helping the optimizer to decide whether to use an index versus a full table scan.  If a data column has high selectivity and a low CF, then an index scan is usually the fastest execution method.  Once your large tables are in PK order with a low CF, performance can increase dramatically.  The main goal of table reorganization is to reduce IO when accessing the big database tables.  What it does is two main things:

1. Reorders the table data according to the primary key index.
2. When using the ā€œCā€ which stands for column reordering, it also pushes columns that have no data, nulls, to the end of the table row. This is good thing for tables having a high number of rows as Oracle works in a 254 columns chunks.

Some of the larger Demantra tables have upwards of 200+ columns.  Since every customer uses the Demantra tool in a different manner a portion of these columns will naturally be left as null.  Pushing the null columns to the end of the row decreases data access waits or contention by streamlining the fetch action.  The end result is a column ordered, less fragmented table that will reduce the IO operations for range operations, for example scan data between dates.  The cluster factor will be lower and thus the CBO will look at our desired access method favorably.

Demantra is sensitive to database scans therefore reviewing and implementing sound database performance techniques is essential.  While the EBS and Value Chain Planning (VCP) RDBMS can provide adequate response with proper statistics, indexes, tuning and patching, Demantra brings processing methods to the table that require tighter controls.  I will highlight some of these areas that require tighter control.

1) Tables that have 300+ columns many of the columns are null.  The columns are in the table to represent the family of Demantra solutions.  For
   example Demand Planning, Advanced Demand Planning, Promotion Planning, S&OP, etc.  When the null columns are pushed to the end of the row, the
   read operation becomes streamlined thus increasing performance.

2) Demantra moves significant amounts of data to and from the disk.  It behooves the implementer/Applications DBA to implement a strategy that reduces wait constraints.  Here is a sample of techniques that require strategic implementation attention:

   - Block size 16k or larger
   - PCTFREE set at 30% to 40%
   - FREELIST increased according to your particular implementation
   - INITRANS increased according to your particular implementation
   - Statistics maintained at a 30% sample or larger
   - Parallel Processing at every possible contention point
   - Redo size appropriate to keep switches at 3-4 per hour
   - No Automatic Segment Management (ASM)
   - No Editioning
   - Partitions implemented
   - Large SGA to accommodate multi-block reads
   - Synchronous IO implemented
   - Careful setting of Demantra CBO parameters


In conclusion, it is true that Demantra requires RDBMS implementation strategies that are unique but not uncommon for OLTP and Warehouse systems.
However, VCP requires a unique trick that is unique to VCP.  Creating statistics on empty MLOG$ objects then locking the statistics to the object.
It has been proven that this increases performance by reducing a bottleneck.

Reference Notes:
- Demantra Out of Order Ratio, Table_reorg Procedure, Partitions and Clustering Factor - Manage Your Demantra Database Objects (Doc ID 1548760.1)
- Demantra DB Health and Performance: Oracle Demantra Database Best Practices - A White Paper / Demantra Performance Clustering Factor Out of Order Ratio TABLE_REORG CHECK_REORG (Doc ID 1499638.1)
- Demantra Performance Clustering Factor Out of Order Ratio TABLE_REORG CHECK_REORG (Doc ID 1594372.1)
- Demantra How to Use TABLE_REORG to Reorder MDP_MATRIX in Primary Key (PK) Order Action Plan Version 7.3.1.3 and Later. See 1085012.1 Prior to 7.3.1.3 (Doc ID 1528966.1)
- Demantra Large Database Object Diagnosis and Maintenance Best Practices for Best Performance (Doc ID 1629078.1)
- Demantra Large Database Object Diagnosis and Maintenance Best Practices for Best Performance (Doc ID 1629078.1)

Saturday Oct 26, 2013

Demantra Partitioning and the First PK Column

  We have found that it is necessary in Demantra to have an index that matches the partition key, although it does not have to be the PK.  It is ok
  to create a new index instead of changing the PK.

  For example, if my PK on SALES_DATA is (ITEM_ID, LOCATION_ID, SALES_DATE) and I decide partition by SALES_DATE, then I should add an index starting
  with the partition key like this: (SALES_DATE, ITEM_ID, LOCATION_ID).

  * Note that the first column of the new index matches the partition key.

  It might also be helpful to create a 2nd index with the other PK columns reversed (SALES_DATE, LOCATION_ID, ITEM_ID). Again, the first column
  matches the partition key.

Wednesday Oct 23, 2013

Demantra Performance Clustering Factor Out of Order Ratio TABLE_REORG CHECK_REORG (Doc ID 1594372.1)

Hello!   There is a new document available:

Demantra Performance Clustering Factor Out of Order Ratio TABLE_REORG CHECK_REORG (Doc ID 1594372.1)

Demantra Performance Clustering Factor Out of Order Ratio TABLE_REORG CHECK_REORG

The table reorganization can be setup to automatically run in version 7.3.1.5. 

In version 12.2.2 we run the TABLE_REORG.CHECK_REORG function at every appserver restart.
If the function recommends a reorg then we strongly encourage to reorg the database object. 
This is documented in the official docs.

In versions 7.3.1.3 and 7.3.1.4, the TABLE_REORG module exists and can be used.
It has two main functions that are documented in the Implementation Guide Supplement,
Release 7.3, Part No. E26760-03, chapter 4.

In short, if you are using version 7.3.1.3 or higher, you can check for the need to run a reorg by doing the following 2 steps:

1. Run TABLE_REORG.CHECK_REORG('T');
2. Check the table LOG_TABLE_REORG for recommendations

If you are on a version before 7.3.1.3, you will need to follow the instructions below to determine if you need to do a manual reorg.

How to determine if a table reorg is needed

1. It is strongly encouraged by DEV that You gather statistics on the required table.  The prefered percentage for the gather is 100%.

2. Run the following SQL to evaluate how table reorg might affect Primary Key (PK) based access:

 
SELECT ui.index_name,trunc((ut.num_rows/ui.clustering_factor)/(ut.num_rows/ut.blocks),2)
FROM user_indexes ui, user_tables ut, user_constraints uc
WHERE ui.table_name=ut.table_name
AND ut.table_name=uc.table_name
AND ui.index_name=uc.index_name
AND UC.CONSTRAINT_TYPE='P'
AND ut.table_name=upper('&enter_table_name');
 

3. Based on the result:

VALUE ABOVE 0.75 - DOES NOT REQUIRE REORG

VALUE BETWEEN 0.5 AND 0.75 - REORG IS RECOMMENDED

VALUE LOWER THAN 0.5 - IT IS HIGHLY RECOMMENDED TO REORG

Updates to the Demantra Partial Schema Exporter Tool, Patch 13930627, are Available.

Hello!  Updates to the Demantra Partial Schema Exporter Tool, Patch 13930627, are Available.
This is an updated re-release of the generic Partial Schema Exporter Tool.  The generic patch is for 7.3.1.x and 12.2.x.
TABLE_REORG was introduced in 7.3.1.3 12.2.0.  Therefore for 7.3.1.x the schema must be at 7.3.1.3 or above.

This is build 3 of the patch.

It contains fixes for the following bugs
- BUG 17495971 - DEMANTRA 12.2 - CUMULATIVE HISTORY NOT CORRECT
  It now only uses DATA_PUMP COMPRESSION only on Enterprise Edition for 11g and and up.

- Bug 17452153 - 1OFF:16086475:TRYING TO FILTER DROP DOWN IN A METHOD CALL USING MORE THAN 1 ATTR
  It now builds GL level filters with and without the GL id column where applicable.

These bugs are also fixed in 7.3.1.6 and 12.2.3.

Wednesday Feb 13, 2013

Demantra MDP_Matrix 7.3.1.3 and Above using Table_Reorg to Rebuild by Primary Key.


Demantra MDP_Matrix table reorg by Primary Key.  This is a non partitioned table.

Sample Action Plan to create partitions on Demantra Sales_data table.  This has been used recently and was successful.

USE at your own RISK after careful study and adjustment to meet your needs.  This was produced to use in an 11gr2 RDBMS environment.   

Step 1:- Create tablespace for MDP_MATRIX
=================================================================
Create tablespace MDP_MATRIX_DATA
datafile '/my_instance/oradata/data01/MDP_MATRIX_DATA_01.dbf' size 5000m
LOGGING ONLINE PERMANENT BLOCKSIZE 16384
EXTENT MANAGEMENT LOCAL AUTOALLOCATE DEFAULT
NOCOMPRESS  SEGMENT SPACE MANAGEMENT AUTO;

Alter tablespace MDP_MATRIX_DATA add datafile '/my_instance/oradata/data01/MDP_MATRIX_DATA_02.dbf' size 5000m;
Alter tablespace MDP_MATRIX_DATA add datafile '/my_instance/oradata/data01/MDP_MATRIX_DATA_03.dbf' size 5000m;

Step 2:- Create tablespace for MDP_MATRIX INDEX's
=================================================================
Create tablespace MDP_MATRIX_IDX
datafile '/my_instance/oradata/data01/MDP_MATRIX_IDX_01.dbf' size 5000m
LOGGING ONLINE PERMANENT BLOCKSIZE 16384
EXTENT MANAGEMENT LOCAL AUTOALLOCATE DEFAULT
NOCOMPRESS  SEGMENT SPACE MANAGEMENT AUTO;

Alter tablespace MDP_MATRIX_DATA add datafile '/my_instance/oradata/data01/MDP_MATRIX_IDX_02.dbf' size 5000m;
Alter tablespace MDP_MATRIX_DATA add datafile '/my_instance/oradata/data01/MDP_MATRIX_IDX_03.dbf' size 5000m;

Step 3:- Move the table MDP_MATRIX to MDP_MATRIX_DATA
=================================================================
conn demantra/<Passwd>

alter session force parallel dml;

alter table MDP_MATRIX move MDP_MATRIX_DATA parallel 7;

alter table MDP_MATRIX parallel 3;


Step 4:- Do the Row order reorg for MDP_MATRIX Table as per the Primary Key
===========================================================================================

NOTE:- Monitor the Tablespaces Closely MDP_MATRIX_DATA/ And MDP_MATRIX_IDX for this below activity.


SELECT /*+ PARALLEL(SALES_DATA,4) */(ROUND(((SELECT /*+ PARALLEL(SALES_DATA,4) */ COUNT(*) AS CNT     FROM (SELECT /*+ PARALLEL(SALES_DATA,4) */ SALES_DATE , ITEM_ID
          , LOCATION_ID,RELATIVE_FNO,BLOCK_NUMBER ,ROW_NUMBER,DATA_ROW
     ,(LAG(DATA_ROW) OVER(PARTITION BY RELATIVE_FNO, BLOCK_NUMBER ORDER BY
              ROW_NUMBER)) AS PREV_DATA_ROW FROM (SELECT /*+ PARALLEL(SALES_DATA,4) */ SALES_DATE, ITEM_ID, LOCATION_ID
          ,RELATIVE_FNO ,BLOCK_NUMBER
          ,ROW_NUMBER
     ,(DENSE_RANK() OVER(PARTITION BY RELATIVE_FNO, BLOCK_NUMBER ORDER
              BY SALES_DATE, ITEM_ID, LOCATION_ID)) AS DATA_ROW
          FROM (SELECT  /*+ PARALLEL(SALES_DATA,8) */ SALES_DATE, ITEM_ID, LOCATION_ID
          ,DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) RELATIVE_FNO
          ,DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) AS BLOCK_NUMBER
          ,DBMS_ROWID.ROWID_ROW_NUMBER(ROWID) AS ROW_NUMBER
          FROM SALES_DATA
          ) C
          ) B
          ) A
          WHERE DATA_ROW != PREV_DATA_ROW
          AND DATA_ROW != PREV_DATA_ROW + 1)/(SELECT /*+ PARALLEL(SALES_DATA,4) */ COUNT(*) FROM SALES_DATA)),3)*100) AS "Out Of Order Ratio %"


Step 5:- Reorder the MDP_MATRIX Table
===========================================================================================
Reorder the MDP_MATRIX Table as per Primary Key

Script to grant_table_reorg (locate the sql and adjust your path)
SQL> @your_instance_name/oracle/sales_data/grant_table_reorg.sql

SQL> table_reorg.reorg ('DEMANTRA,'MDP_MATRIX','C');

Script to revoke_table_reorg  (locate the sql and adjust your path)
SQL> @your_instance_name/oracle/sales_data/revoke_table_reorg.sql

Step 6:- Rebuild the index MDP_MATRIX matrix and move them to MDP_MATRIX_IDX Tablespace
===========================================================================================
spool INDEX_REBUILD.lst
Alter Index WS_MDPMATRIX_1_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index WS_MDPMATRIX_2_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index WS_MDPMATRIX_3_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index DIVIDER_I_X_1 rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index WS_MDPMATRIX_4_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MATRIX_IND rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_ITEM_CAT_1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_ITEM_CAT_2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_ITEM_CAT_3_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_ITEM_CAT_4_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_ITEM_CAT_5_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_ITEM_CAT_6_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_IT_BR_CAT_1_EP_ID_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_IT_BR_CAT_2_EP_ID_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_IT_BR_CAT_3_EP_ID_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_IT_BR_CAT_4_EP_ID_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_IT_BR_CAT_5_EP_ID_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_PARENT_AD_NUM_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_ACCOUNT_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_BUS_GROUP_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_CUSTOMER_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_CUST_CLASS_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_DEMAND_CLASS_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_LEGAL_ENTITY_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_OPER_UNIT_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_PROD_CAT_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_PROD_FAMILY_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_SALES_CH_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_SUPPLIER_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_TP_ZONE_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_EBS_ZONE_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_ITEM_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_10_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_3_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_4_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_5_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_6_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_7_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_8_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_I_ATT_9_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LR1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LR2A_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LR2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LS1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LS2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LS3_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LS4_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LS5_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_LS6_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_10_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_PK rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_6_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_7_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_8_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_9_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_ORGANIZATION_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_ORG_TYPE_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_P1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_P2A1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_P2A2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_P2A_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_P2B_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_P3_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_P4_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_SITE_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_MATRIX_1465_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_ITEM_CAT_7_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_3_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_4_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_L_ATT_5_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index DO_FORE_IND rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index LOC_NO rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_BRANCH_ID_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_IN rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_LOC rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_MATRIX_481_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_MATRIX_537_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_MATRIX_706_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MDP_MATRIX_ITEM_ID_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index MM_COMP_LEAD_DATE_IDX rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index PREDICTION_STATUS_IND rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index PROP_CHANGES_IND rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_CORP_CODE_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_BR_CAT_1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_BR_CAT_2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_BR_CAT_3_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_BR_CAT_4_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_BR_CAT_5_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_BR_CITY_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_BR_COUNTRY_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_BR_STATE_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CAT_1_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CAT_2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CAT_3_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CAT_4_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CAT_5_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CAT_6_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CAT_7_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CITY_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_CTRY_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_E1_CUST_STATE_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index T_EP_P2_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
Alter Index DIVIDER_I_X rebuild Online parallel (degree 7)  tablespace MDP_MATRIX_IDX;
spool off;

spool Change_parallel.lst
Alter Index WS_MDPMATRIX_1_IDX parallel 1;
Alter Index WS_MDPMATRIX_2_IDX parallel 1;
Alter Index WS_MDPMATRIX_3_IDX parallel 1;
Alter Index DIVIDER_I_X_1 parallel 1;
Alter Index WS_MDPMATRIX_4_IDX parallel 1;
Alter Index MATRIX_IND parallel 1;
Alter Index T_EP_E1_ITEM_CAT_1_I_X parallel 1;
Alter Index T_EP_E1_ITEM_CAT_2_I_X parallel 1;
Alter Index T_EP_E1_ITEM_CAT_3_I_X parallel 1;
Alter Index T_EP_E1_ITEM_CAT_4_I_X parallel 1;
Alter Index T_EP_E1_ITEM_CAT_5_I_X parallel 1;
Alter Index T_EP_E1_ITEM_CAT_6_I_X parallel 1;
Alter Index T_EP_E1_IT_BR_CAT_1_EP_ID_IDX parallel 1;
Alter Index T_EP_E1_IT_BR_CAT_2_EP_ID_IDX parallel 1;
Alter Index T_EP_E1_IT_BR_CAT_3_EP_ID_IDX parallel 1;
Alter Index T_EP_E1_IT_BR_CAT_4_EP_ID_IDX parallel 1;
Alter Index T_EP_E1_IT_BR_CAT_5_EP_ID_IDX parallel 1;
Alter Index T_EP_E1_PARENT_AD_NUM_I_X parallel 1;
Alter Index T_EP_EBS_ACCOUNT_I_X parallel 1;
Alter Index T_EP_EBS_BUS_GROUP_I_X parallel 1;
Alter Index T_EP_EBS_CUSTOMER_I_X parallel 1;
Alter Index T_EP_EBS_CUST_CLASS_I_X parallel 1;
Alter Index T_EP_EBS_DEMAND_CLASS_I_X parallel 1;
Alter Index T_EP_EBS_LEGAL_ENTITY_I_X parallel 1;
Alter Index T_EP_EBS_OPER_UNIT_I_X parallel 1;
Alter Index T_EP_EBS_PROD_CAT_I_X parallel 1;
Alter Index T_EP_EBS_PROD_FAMILY_I_X parallel 1;
Alter Index T_EP_EBS_SALES_CH_I_X parallel 1;
Alter Index T_EP_EBS_SUPPLIER_I_X parallel 1;
Alter Index T_EP_EBS_TP_ZONE_I_X parallel 1;
Alter Index T_EP_EBS_ZONE_I_X parallel 1;
Alter Index T_EP_ITEM_I_X parallel 1;
Alter Index T_EP_I_ATT_10_I_X parallel 1;
Alter Index T_EP_I_ATT_1_I_X parallel 1;
Alter Index T_EP_I_ATT_2_I_X parallel 1;
Alter Index T_EP_I_ATT_3_I_X parallel 1;
Alter Index T_EP_I_ATT_4_I_X parallel 1;
Alter Index T_EP_I_ATT_5_I_X parallel 1;
Alter Index T_EP_I_ATT_6_I_X parallel 1;
Alter Index T_EP_I_ATT_7_I_X parallel 1;
Alter Index T_EP_I_ATT_8_I_X parallel 1;
Alter Index T_EP_I_ATT_9_I_X parallel 1;
Alter Index T_EP_LR1_I_X parallel 1;
Alter Index T_EP_LR2A_I_X parallel 1;
Alter Index T_EP_LR2_I_X parallel 1;
Alter Index T_EP_LS1_I_X parallel 1;
Alter Index T_EP_LS2_I_X parallel 1;
Alter Index T_EP_LS3_I_X parallel 1;
Alter Index T_EP_LS4_I_X parallel 1;
Alter Index T_EP_LS5_I_X parallel 1;
Alter Index T_EP_LS6_I_X parallel 1;
Alter Index T_EP_L_ATT_10_I_X parallel 1;
Alter Index T_EP_L_ATT_1_I_X parallel 1;
Alter Index MDP_PK parallel 1;
Alter Index T_EP_L_ATT_6_I_X parallel 1;
Alter Index T_EP_L_ATT_7_I_X parallel 1;
Alter Index T_EP_L_ATT_8_I_X parallel 1;
Alter Index T_EP_L_ATT_9_I_X parallel 1;
Alter Index T_EP_ORGANIZATION_I_X parallel 1;
Alter Index T_EP_ORG_TYPE_I_X parallel 1;
Alter Index T_EP_P1_I_X parallel 1;
Alter Index T_EP_P2A1_I_X parallel 1;
Alter Index T_EP_P2A2_I_X parallel 1;
Alter Index T_EP_P2A_I_X parallel 1;
Alter Index T_EP_P2B_I_X parallel 1;
Alter Index T_EP_P3_I_X parallel 1;
Alter Index T_EP_P4_I_X parallel 1;
Alter Index T_EP_SITE_I_X parallel 1;
Alter Index MDP_MATRIX_1465_IDX parallel 1;
Alter Index T_EP_E1_ITEM_CAT_7_I_X parallel 1;
Alter Index T_EP_L_ATT_2_I_X parallel 1;
Alter Index T_EP_L_ATT_3_I_X parallel 1;
Alter Index T_EP_L_ATT_4_I_X parallel 1;
Alter Index T_EP_L_ATT_5_I_X parallel 1;
Alter Index DO_FORE_IND parallel 1;
Alter Index LOC_NO parallel 1;
Alter Index MDP_BRANCH_ID_IDX parallel 1;
Alter Index MDP_IN parallel 1;
Alter Index MDP_LOC parallel 1;
Alter Index MDP_MATRIX_481_IDX parallel 1;
Alter Index MDP_MATRIX_537_IDX parallel 1;
Alter Index MDP_MATRIX_706_IDX parallel 1;
Alter Index MDP_MATRIX_ITEM_ID_IDX parallel 1;
Alter Index MM_COMP_LEAD_DATE_IDX parallel 1;
Alter Index PREDICTION_STATUS_IND parallel 1;
Alter Index PROP_CHANGES_IND parallel 1;
Alter Index T_EP_CORP_CODE_I_X parallel 1;
Alter Index T_EP_E1_BR_CAT_1_I_X parallel 1;
Alter Index T_EP_E1_BR_CAT_2_I_X parallel 1;
Alter Index T_EP_E1_BR_CAT_3_I_X parallel 1;
Alter Index T_EP_E1_BR_CAT_4_I_X parallel 1;
Alter Index T_EP_E1_BR_CAT_5_I_X parallel 1;
Alter Index T_EP_E1_BR_CITY_I_X parallel 1;
Alter Index T_EP_E1_BR_COUNTRY_I_X parallel 1;
Alter Index T_EP_E1_BR_STATE_I_X parallel 1;
Alter Index T_EP_E1_CUST_CAT_1_I_X parallel 1;
Alter Index T_EP_E1_CUST_CAT_2_I_X parallel 1;
Alter Index T_EP_E1_CUST_CAT_3_I_X parallel 1;
Alter Index T_EP_E1_CUST_CAT_4_I_X parallel 1;
Alter Index T_EP_E1_CUST_CAT_5_I_X parallel 1;
Alter Index T_EP_E1_CUST_CAT_6_I_X parallel 1;
Alter Index T_EP_E1_CUST_CAT_7_I_X parallel 1;
Alter Index T_EP_E1_CUST_CITY_I_X parallel 1;
Alter Index T_EP_E1_CUST_CTRY_I_X parallel 1;
Alter Index T_EP_E1_CUST_STATE_I_X parallel 1;
Alter Index T_EP_P2_I_X parallel 1;
Alter Index DIVIDER_I_X parallel 1;
spool off;

Step 7:- Recompile the Invalid Objects
===========================================================================================

Run utlrp.sql / dbms_recomp  Recompile all the objects.

Spool Data_collection_after_MDP_Tablereorg.lst
select object_type,count(1) from dba_objects where owner='DEMANTRA' group by object_type order by  2;
select object_name,object_type,owner,status from dba_objects where status='INVALID';
select index_name,table_name,status from dba_indexes where table_name='MDP_MATRIX';
select constraint_name,table_name,status from dba_constraints where table_name='MDP_MATRIX';
Spool Off


Step 8:- Gather the Schema Stats Again
===========================================================================================
SQL> DROP TEMPS
SQL> execute DBMS_STATS.DELETE_TABLE_STATS(ownname => 'DEMANTRA', tabname => 'SALES_DATA');
SQL> execute DBMS_STATS.DELETE_TABLE_STATS(ownname => 'DEMANTRA', tabname => 'MDP_MATRIX');

exec dbms_stats.GATHER_SCHEMA_STATS(OWNNAME=>'DEMANTRA', estimate_percent=>30 ,DEGREE=> 10);


Step 9:- Check the Reorder out of ratio
===========================================================================================

SELECT /*+ PARALLEL(SALES_DATA,4) */(ROUND(((SELECT /*+ PARALLEL(SALES_DATA,4) */ COUNT(*) AS CNT     FROM (SELECT /*+ PARALLEL(SALES_DATA,4) */ SALES_DATE , ITEM_ID
          , LOCATION_ID,RELATIVE_FNO,BLOCK_NUMBER ,ROW_NUMBER,DATA_ROW
     ,(LAG(DATA_ROW) OVER(PARTITION BY RELATIVE_FNO, BLOCK_NUMBER ORDER BY
              ROW_NUMBER)) AS PREV_DATA_ROW FROM (SELECT /*+ PARALLEL(SALES_DATA,4) */ SALES_DATE, ITEM_ID, LOCATION_ID
          ,RELATIVE_FNO ,BLOCK_NUMBER
          ,ROW_NUMBER
     ,(DENSE_RANK() OVER(PARTITION BY RELATIVE_FNO, BLOCK_NUMBER ORDER
              BY SALES_DATE, ITEM_ID, LOCATION_ID)) AS DATA_ROW
          FROM (SELECT  /*+ PARALLEL(SALES_DATA,8) */ SALES_DATE, ITEM_ID, LOCATION_ID
          ,DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) RELATIVE_FNO
          ,DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) AS BLOCK_NUMBER
          ,DBMS_ROWID.ROWID_ROW_NUMBER(ROWID) AS ROW_NUMBER
          FROM SALES_DATA
          ) C
          ) B
          ) A
          WHERE DATA_ROW != PREV_DATA_ROW
          AND DATA_ROW != PREV_DATA_ROW + 1)/(SELECT /*+ PARALLEL(SALES_DATA,4) */ COUNT(*) FROM SALES_DATA)),3)*100) AS "Out Of Order Ratio %"

Spool Data_collection_after_MDP_column_reorg.lst
select object_type,count(1) from dba_objects where owner='DEMANTRA' group by object_type order by  2;
select object_name,object_type,owner,status from dba_objects where status='INVALID';
select index_name,table_name,status from dba_indexes where table_name='MDP_MATRIX';
select constraint_name,table_name,status from dba_constraints where table_name='MDP_MATRIX';
Spool Off

About

This blog delivers the latest information regarding performance and install/upgrade. Comments welcome

Search

Archives
« May 2015
SunMonTueWedThuFriSat
     
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
      
Today