Tuesday Nov 12, 2013

Oracle Big Data Learning Library

Click on LEARN BY PRODUCT to view all learning resources.

Oracle Big Data Essentials

Attend this Oracle University Course!

Using Oracle NoSQL Database

Attend this Oracle University class!

Oracle and Big Data on OTN

See the latest resource on OTN.

<script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Wednesday Sep 04, 2013

Oracle Data Miner (Extension of SQL Developer 4.0) Integrate Oracle R Enterprise Mining Algorithms into workflow using the SQL Query node

I posted a new white paper authored by Denny Wong, Principal Member of Technical Staff, User Interfaces and Components, Oracle Data Mining Technologies.  You can access the white paper here and the companion files here.  Here is an excerpt:

Oracle Data Miner (Extension of SQL Developer 4.0) 

Integrate Oracle R Enterprise Mining Algorithms into workflow using the SQL Query node

Oracle R Enterprise (ORE), a component of the Oracle Advanced Analytics Option, makes the open source R statistical programming language and environment ready for the enterprise and big data. Designed for problems involving large amounts of data, Oracle R Enterprise integrates R with the Oracle Database. R users can develop, refine and deploy R scripts that leverage the parallelism and scalability of the database to perform predictive analytics and data analysis.

Oracle Data Miner (ODMr) offers a comprehensive set of in-database algorithms for performing a variety of mining tasks, such as classification, regression, anomaly detection, feature extraction, clustering, and market basket analysis. One of the important capabilities of the new SQL Query node in Data Miner 4.0 is a simplified interface for integrating R scripts registered with the database. This provides the support necessary for R Developers to provide useful mining scripts for use by data analysts. This synergy provides many additional benefits as noted below.

· R developers can further extend ODMr mining capabilities by incorporating the extensive R mining algorithms from the open source CRAN packages or leveraging any user developed custom R algorithms via SQL interfaces provided by ORE.

· Since this SQL Query node can be part of a workflow process, R scripts can leverage functionalities provided by other workflow nodes which can simplify the overall effort of integrating R capabilities within the database.

· R mining capabilities can be included in the workflow deployment scripts produced by the new sql script generation feature. So the ability of deploy R functionality within the context of an Data Miner workflow is easily accomplished.

· Data and processing are secured and controlled by the Oracle Database. This alleviates a lot of risk that are incurred by other providers, when users have to export data out of the database in order to perform advanced analytics.

Oracle Advanced Analytics saves analysts, developers, database administrators and management the headache of trying to integrate R and database analytics. Instead, users can quickly gain the benefit of new R analytics and spend their time and effort on developing business solutions instead of building homegrown analytical platforms.

This paper should be very useful to R developers wishing to better understand how to leverage imbedding R Scripts for use by Data Analysts.  Analysts will also find the paper useful to see how R features can be surfaced for their use in Data Miner. The specific use case covered demonstrates how to use the SQL Query node to integrate R glm and rpart regression model build, test, and score operations into the workflow along with nodes that perform data preparation and residual plot graphing. However, the integration process described here can easily be adapted to integrate other R operations like statistical data analysis and advanced graphing to expand ODMr functionalities.

<script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Monday Jul 15, 2013

Oracle Data Miner GUI, part of SQL Developer 4.0 Early Adopter 1 is now available for download on OTN

The NEW Oracle Data Miner GUI, part of SQL Developer 4.0 Early Adopter 1 is now available for download on OTN.  See link to SQL Developer 4.0 EA1.   


The Oracle Data Miner 4.0 New Features are applicable to Oracle Database 11g Release 2 and Oracle Database Release 12c:  See Oracle Data Miner Extension to SQL Developer 4.0 Release Notes for EA1 for additional information  

· Workflow SQL Script Deployment

o Generates SQL scripts to support full deployment of workflow contents

· SQL Query Node

o Integrate SQL queries to transform data or provide a new data source

o Supports the running of R Language Scripts and viewing of R generated data and graphics


· Graph Node

o Generate Line, Scatter, Bar, Histogram and Box Plots



· Model Build Node Improvements

o Node level data usage specification applied to underlying models

o Node level text specifications to govern text transformations

o Displays heuristic rules responsible for excluding predictor columns

o Ability to control the amount of Classification and Regression test results generated

· View Data

o Ability to drill in to view custom objects and nested tables

These new Oracle Data Miner GUI capabilities expose Oracle Database 12c and Oracle Advanced Analytics/Data Mining Release 1 features:

· Predictive Query Nodes

o Predictive results without the need to build models using Analytical Queries

o Refined predictions based on data partitions

· Clustering Node New Algorithm

o Added Expectation Maximization algorithm

· Feature Extraction Node New Algorithms

o Added Singular Value Decomposition and Principal Component Analysis algorithms

· Text Mining Enhancements

o Text transformations integrated as part of Model's Automatic Data Preparation

o Ability to import Build Text node specifications into a Model Build node

· Prediction Result Explanations

o Scoring details that explain predictive result

· Generalized Linear Model New Algorithm Settings

o New algorithm settings provide feature selection and generation

See OAA on OTN pages http://www.oracle.com/technetwork/database/options/advanced-analytics/index.html for more information on Oracle Advanced Analytics.

<script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Wednesday May 08, 2013

Oracle Advanced Analytics and Data Mining at the Movies on YouTube

Periodically, I've recorded a demonstration and/or presentation on Oracle Advanced Analytics and Data Mining and have posted them on YouTube.  Here are links to some of more recent YouTube postings--sort of an 
Oracle Advanced Analytics and Data Mining at the Movies experience.

So.... grab your popcorn and a comfortable chair.  Hope you enjoy!

Charlie 

Oracle Advanced Analytics at the Movies

<script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Wednesday Mar 13, 2013

Oracle OpenWorld Call for Proposals now OPEN Submit your Oracle Advanced Analytics/Data Mining/ORE talks today!!

Calling All Oracle OpenWorld Oracle Advanced Analytics, Data Mining and R Experts


The Call for Proposals is open. Have something interesting to present to the world’s largest gathering of Oracle technologists and business leaders? Making breakthrough innovations with Java or MySQL? We want to hear from you, and so do the attendees at this year’s Oracle OpenWorld, JavaOne, and MySQL Connect conferences. Submit your proposal now for a chance to share your expertise at one of the most important technology and business conferences of the year.

CHOOSE...

Select one of Oracle’s premiere conferences

SHARE...

Submit your proposal for sharing your most innovative ideas and experiences

JOIN...

Connect with the elite community of Oracle OpenWorld, JavaOne, and MySQL Connect session leaders in 2013

We recommend you take the time to review the General Information, Content Program Policies, and Tips and Guidelines pages before you begin. We look forward to your submissions!


Submit Papers

Please submit your papers by clicking on the link below and then select the event for which you are submitting.

Submit Now!

General Information

Conferences location: San Francisco, California, USA


Dates

  • Oracle OpenWorld: Sunday, September 22, 2013–Thursday, September 26, 2013
  • JavaOne: Sunday, September 22, 2013–Thursday, September 26, 2013
  • MySQL Connect: Saturday, September 21–Monday, September 23, 2013

Key 2013 deadlines

Deliverables

Due Dates

Call for Proposals–Open

Wednesday, March 13

Call for Proposals–Closed

Friday, April 12, 11:59 p.m. PDT

Notifications for accepted and declined submissions sent

Mid-June

For Oracle OpenWorld, Oracle employee submitters will need to contact the appropriate Oracle track leads before submitting. To view a list of track leads, click here

Contact us:

Tuesday Jan 01, 2013

Turkcell Combats Pre-Paid Calling Card Fraud Using In-Database Oracle Advanced Analytics

Turkcell İletişim Hizmetleri A.S. Successfully Combats Communications Fraud with Advanced In-Database Analytics

[Original link available on oracle.com http://www.oracle.com/us/corporate/customers/customersearch/turkcell-1-exadata-ss-1887967.html]

Turkcell İletişim Hizmetleri A.Ş. is a leading provider of mobile communications in Turkey with more than 34 million subscribers. Established in 1994, Turkcell created the first global system for a mobile communications (GSM) network in Turkey. It was the first Turkish company listed on the New York Stock Exchange.

Communications fraud, or the  use of telecommunications products or services without intention to pay, is a major issue for the organization. The practice is fostered by prepaid card usage, which is growing rapidly. Anonymous network-branded prepaid cards are a tempting vehicle for money launderers, particularly since these cards can be used as cash vehicles—for example, to withdraw cash at ATMs. It is estimated that prepaid card fraud represents an average loss of US$5 per US$10,000 in transactions. For a communications company with billions of transactions, this could result in millions of dollars lost through fraud every year.

Consequently, Turkcell wanted to combat communications fraud and money laundering by introducing advanced analytical solutions to monitor key parameters of prepaid card usage and issue alerts or block fraudulent activity. This type of fraud prevention would require extremely fast analysis of the company’s one petabyte of uncompressed customer data to identify patterns and relationships, build predictive models, and apply those models to even larger data volumes to make accurate fraud predictions.

To achieve this, Turkcell deployed Oracle Exadata Database Machine X2-2 HC Full Rack, so that data analysts can build predictive antifraud models inside the Oracle Database and deploy them into Oracle Exadata for scoring, using Oracle Data Mining, a component of Oracle Advanced Analytics, leveraging Oracle Database11g technology. This enabled the company to create predictive antifraud models faster than with any other machine, as models can be built using search and query language (SQL) inside the database, and Oracle Exadata can access raw data without summarized tables, thereby achieving extremely fast analyses.

Challenges

A word from Turkcell İletişim Hizmetleri A.Ş.

“Turkcell manages 100 terabytes of compressed data—or one petabyte of uncompressed raw data—on Oracle Exadata. With Oracle Data Mining, a component of the Oracle Advanced Analytics Option, we can analyze large volumes of customer data and call-data records easier and faster than with any other tool and rapidly detect and combat fraudulent phone use.” – Hasan Tonguç Yılmaz, Manager, Turkcell İletişim Hizmetleri A.Ş.

  • Combat communications fraud and money laundering by introducing advanced analytical solutions to monitor prepaid card usage and alert or block suspicious activity
  • Monitor numerous parameters for up to 10 billion daily call-data records and value-added service logs, including the number of accounts and cards per customer, number of card loads per day, number of account loads over time, and number of account loads on a subscriber identity module card at the same location
  • Enable extremely fast sifting through huge data volumes to identify patterns and relationships, build predictive antifraud models, and apply those models to even larger data volumes to make accurate fraud predictions
  • Detect fraud patterns as soon as possible and enable quick response to minimize the negative financial impact

Solutions

Oracle Product and Services

  • Used Oracle Exadata Database Machine X2-2 HC Full Rack to create predictive antifraud models more quickly than with previous solutions by accessing raw data without summarized tables and providing unmatched query speed, which optimizes and shortens the project design phases for creating predictive antifraud models
  • Leveraged SQL for the preparation and transformation of one petabyte of uncompressed raw communications data, using Oracle Data Mining, a feature of Oracle Advanced Analytics to increase the performance of predictive antifraud models
  • Deployed Oracle Data Mining models on Oracle Exadata to identify actionable information in less time than traditional methods—which would require moving large volumes of customer data to a third-party analytics software—and achieve an average gain of four hours and more, taking into consideration the absence of any system crash (as occurred in the previous environment) during data import
  • Achieved extreme data analysis speed with in-database analytics performed inside Oracle Exadata, through a row-wise information search—including day, time, and duration of calls, as well as number of credit recharges on the same day or at the same location—and query language functions that enabled analysts to detect fraud patterns almost immediately
  • Implemented a future-proof solution that could support rapidly growing data volumes that tend to double each year with Oracle Exadata’s massively scalable data warehouse performance

Why Oracle

“We selected Oracle because in-database mining to support antifraud efforts will be a major focus for Turkcell in the future. With Oracle Exadata Database Machine and the analytics capabilities of Oracle Advanced Analytics, we can complete antifraud analysis for large amounts of call-data records in just a few hours. Further, we can scale the solution as needed to support rapid communications data growth,” said Hasan Tonguç Yılmaz, datawarehouse/data mining developer, Turkcell Teknoloji Araştırma ve Geliştirme A.Ş.

Partner

Oracle Partner: Turkcell Teknoloji Araştırma ve Geliştirme A.Ş.

All development and test processes were performed by Turkcell Teknoloji. The company also made significant contributions to the configuration of numerous technical analyses which are carried out regularly by Turkcell İletişim Hizmetleri's antifraud specialists.

Resources

<script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Tuesday May 29, 2012

Fraud and Anomaly Detection using Oracle Data Mining YouTube-like Video

I've created and recorded another YouTube-like presentation and "live" demos of Oracle Advanced Analytics Option, this time focusing on Fraud and Anomaly Detection using Oracle Data Mining.  [Note:  It is a large MP4 file that will open and play in place.  The sound quality is weak so you may need to turn up the volume.]

Data is your most valuable asset. It represents the entire history of your organization and its interactions with your customers.  Predictive analytics leverages data to discover patterns, relationships and to help you even make informed predictions.   Oracle Data Mining (ODM) automatically discovers relationships hidden in data.  Predictive models and insights discovered with ODM address business problems such as:  predicting customer behavior, detecting fraud, analyzing market baskets, profiling and loyalty.  Oracle Data Mining, part of the Oracle Advanced Analytics (OAA) Option to the Oracle Database EE, embeds 12 high performance data mining algorithms in the SQL kernel of the Oracle Database. This eliminates data movement, delivers scalability and maintains security. 

But, how do you find these very important needles or possibly fraudulent transactions and huge haystacks of data? Oracle Data Mining’s 1 Class Support Vector Machine algorithm is specifically designed to identify rare or anomalous records.  Oracle Data Mining's 1-Class SVM anomaly detection algorithm trains on what it believes to be considered “normal” records, build a descriptive and predictive model which can then be used to flags records that, on a multi-dimensional basis, appear to not fit in--or be different.  Combined with clustering techniques to sort transactions into more homogeneous sub-populations for more focused anomaly detection analysis and Oracle Business Intelligence, Enterprise Applications and/or real-time environments to "deploy" fraud detection, Oracle Data Mining delivers a powerful advanced analytical platform for solving important problems.  With OAA/ODM you can find suspicious expense report submissions, flag non-compliant tax submissions, fight fraud in healthcare claims and save huge amounts of money in fraudulent claims  and abuse.  

This presentation and several brief demos will show Oracle Data Mining's fraud and anomaly detection capabilities.  


<script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Thursday May 10, 2012

Oracle Data Mining Virtual Classes Scheduled

Two Oracle Data Mining Virtual Classes are now scheduled.  Register for a course in 2 easy steps.

Step 1: Select your Live Virtual Class options

Select


Live Virtual Class
Course ID: D76362GC10
Course Title: Oracle Database 11g: Data Mining Techniques
NEW
Duration: 2 Days
Price: US$ 1,300 Dollars

Step 2: Select the date and location of your Live Virtual Class

Please select a location below then click on the Add to Cart button

i

Location  Duration Class Date Class Start Time Class End Time Course Materials Instruction Language Seats Audience Employees
Online 2 Days 09-Aug-2012 04:00 AM EDT 12:00 PM EDT English English Available Public Employees
Online 2 Days 18-Oct-2012 04:00 AM EDT 12:00 PM EDT English English Available Public Employees

100% Student Satisfaction: Oracle's 100% Student Satisfaction program applies to those publicly scheduled and publicly available Oracle University Instructor Led Training classes that are identified as part of the 100% Student Satisfaction program on the http://www.oracle.com/education website at the time the class is purchased. Oracle will permit unsatisfied students to retake the class, subject to terms and conditions. Customers are not entitled to a refund. For more information and additional terms, conditions and restrictions that apply, click here

Wednesday Apr 04, 2012

Recorded YouTube-like presentation and "live" demos of Oracle Advanced Analytics/Oracle Data Mining

Ever want to just sit and watch a YouTube-like presentation and "live" demos of Oracle Advanced Analytics/Oracle Data Mining?  Then click here! (plays large MP4 file in a browser)

This 1+ hour long session focuses primarily on the Oracle Data Mining component of the Oracle Advanced Analytics Option and is tied to the Oracle SQL Developer Days virtual and onsite events.   I cover:

  • Big Data + Big Data Analytics
  • Competing on analytics & value proposition
  • What is data mining?
  • Typical use cases
  • Oracle Data Mining high performance in-database SQL based data mining functions
  • Exadata "smart scan" scoring
  • Oracle Data Miner GUI (an Extension that ships with SQL Developer)
  • Oracle Business Intelligence EE + Oracle Data Mining results/predictions in dashboards
  • Applications "powered by Oracle Data Mining for factory installed predictive analytics methodologies
  • Oracle R Enterprise

Please contact charlie.berger@oracle.com should you have any questions.  Hope you enjoy! 

Charlie Berger, Sr. Director of Product Management, Oracle Data Mining & Advanced Analytics, Oracle Corporation

Friday Mar 23, 2012

NEW 2-Day Instructor Led Course on Oracle Data Mining Now Available!

A NEW 2-Day Instructor Led Course on Oracle Data Mining has been developed for customers and anyone wanting to learn more about data mining, predictive analytics and knowledge discovery inside the Oracle Database.  To register interest in attending the class, click here and submit your preferred format.

Course Objectives:

  • Explain basic data mining concepts and describe the benefits of predictive analysis
  • Understand primary data mining tasks, and describe the key steps of a data mining process
  • Use the Oracle Data Miner to build,evaluate, and apply multiple data mining models
  • Use Oracle Data Mining's predictions and insights to address many kinds of business problems, including: Predict individual behavior, Predict values, Find co-occurring events
  • Learn how to deploy data mining results for real-time access by end-users

Five reasons why you should attend this 2 day Oracle Data Mining Oracle University course. With Oracle Data Mining, a component of the Oracle Advanced Analytics Option, you will learn to gain insight and foresight to:

  • Go beyond simple BI and dashboards about the past. This course will teach you about "data mining" and "predictive analytics", analytical techniques that can provide huge competitive advantage
  • Take advantage of your data and investment in Oracle technology
  • Leverage all the data in your data warehouse, customer data, service data, sales data, customer comments and other unstructured data, point of sale (POS) data, to build and deploy predictive models throughout the enterprise.
  • Learn how to explore and understand your data and find patterns and relationships that were previously hidden
  • Focus on solving strategic challenges to the business, for example, targeting "best customers" with the right offer, identifying product bundles, detecting anomalies and potential fraud, finding natural customer segments and gaining customer insight.

UDDATED for Oracle Database 12c & SQLDEV 4.0: Evaluating Oracle Data Mining Has Never Been Easier - Evaluation "Kit" Available

UPDATED (March 2014) for ORACLE DATABASE 12c & SQL DEVELOPER 4.0 (with ORACLE DATA MINER 4.0)  Extension

The Oracle Advanced Analytics Option turns the database into an enterprise-wide analytical platform that can quickly deliver enterprise-wide predictive analytics and actionable insights. Oracle Advanced Analytics empowers data and business analysts to extract knowledge, discover new insights and make predictions—working directly with large data volumes in the Oracle Database. Oracle Advanced Analytics, an Option of Oracle Database Enterprise Edition, offers a combination of powerful in-database algorithms and integration with open source R algorithms accessible via SQL and R languages and provides a range of GUI (Oracle Data Miner) and IDE (R client, RStudio, etc.) options targeting business users, data analysts, application developers and data scientists.

Now you can quickly and easily get set up to starting using Oracle Data Mining, the SQL API & GUI component of the Oracle Advanced Analytics Database Option for evaluation purposes. Just go to the Oracle Technology Network (OTN) and follow these simple steps.

Oracle Data Mining Evaluation "Kit" Instructions

Step 1: Download and Install the Oracle Database 12c

Step 2: Install SQL Developer 4.0 (the Oracle Data Miner GUI Extension installs automatically but additional post installation Set Up in required.  See Setting Up Oracle Data Miner )

Step 3: Follow the six (6) free step-by-step Oracle-by-Examples Tutorials:

  • Setting Up Oracle Data Miner 4.0   This tutorial covers the process of setting up Oracle Data Miner for use within Oracle SQL Developer 4.0.
  • Using Oracle Data Miner 4.0 This tutorial covers the use of Oracle Data Miner 4.0 to perform data mining against Oracle Database 12c. In this lesson, you examine and solve a data mining business problem by using the Oracle Data Miner graphical user interface (GUI). The Oracle Data Miner GUI is included as an extension of Oracle SQL Developer, version 4.0.
  • Using Feature Selection and Generation with GLM This tutorial covers the use of Oracle Data Miner 4.0 to leverage enhancements to the Oracle implementation of Generalized Liner Models (GLM) for Oracle Database 12c. These enhancements include support for Feature Selection and Generation.
  • Text Mining with an EM Clustering Model This tutorial covers the use of Oracle Data Miner 4.0 to leverage new text mining enhancements while applying a clustering model. In this lesson, you learn how to use the Expectation Maximization (EM) algorithm in a clustering model.
  • Using Predictive Queries With Oracle Data Miner 4.0 This tutorial covers the use of Predictive Queries against mining data by using Oracle Data Miner 4.0.
  • Using the SQL Query Node in a Data Miner Workflow This tutorial covers the use of the new SQL Query Node in an Oracle Data Miner 4.0 workflow.

That’s it!  Easy, fun and the fastest way to get started evaluating Oracle Advanced Analytics/Oracle Data Mining.  Enjoy!  

Charlie

Note: There are also four (4) additional Oracle Data Miner 3.2 Tutorials that are similar that may be helpful to review.

<script type="text/freezescript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Wednesday Feb 08, 2012

Oracle Announces Availability of Oracle Advanced Analytics for Big Data

Oracle Announces Availability of Oracle Advanced Analytics for Big Data

Oracle Integrates R Statistical Programming Language into Oracle Database 11g

REDWOOD SHORES, Calif. - February 8, 2012

News Facts

  • Oracle today announced the availability of     Oracle Advanced Analytics, a new option for Oracle Database 11g that bundles Oracle R Enterprise together with Oracle Data Mining.
  • Oracle R Enterprise delivers enterprise class performance for users of the R statistical programming language, increasing the scale of data that can be analyzed by orders of magnitude using Oracle Database 11g.
  • R has attracted over two million users since its introduction in 1995, and Oracle R Enterprise dramatically advances capability for R users. Their existing R development skills, tools, and scripts can now also run transparently, and scale against data stored in Oracle Database 11g.
  • Customer testing of Oracle R Enterprise for Big Data analytics on Oracle Exadata has shown up to 100x increase in performance in comparison to their current environment.
  • Oracle Data Mining, now part of Oracle Advanced Analytics, helps enable customers to easily build and deploy predictive analytic applications that help deliver new insights into business performance. Oracle Advanced Analytics, in conjunction with Oracle Big Data Appliance, Oracle Exadata Database Machine and Oracle Exalytics In-Memory Machine, delivers the industry’s most integrated and comprehensive platform for Big Data analytics.

Comprehensive In-Database Platform for Advanced Analytics

  • Oracle Advanced Analytics brings analytic algorithms to data stored in Oracle Database 11g and Oracle Exadata as opposed to the traditional approach of extracting data to laptops or specialized servers.
  • With Oracle Advanced Analytics, customers have a comprehensive platform for real-time analytic applications that deliver insight into key business subjects such as churn prediction, product recommendations, and fraud alerting.
  • By providing direct and controlled access to data stored in Oracle Database 11g, customers can accelerate data analyst productivity while maintaining data security throughout the enterprise.
  • Powered by decades of Oracle Database innovation, Oracle R Enterprise helps enable analysts to run a variety of sophisticated numerical techniques on billion row data sets in a matter of seconds making iterative, speed of thought, and high-quality numerical analysis on Big Data practical.
  • Oracle R Enterprise drastically reduces the time to deploy models by eliminating the need to translate the models to other languages before they can be deployed in production.
  • Oracle R Enterprise integrates the extensive set of Oracle Database data mining algorithms, analytics, and access to Oracle OLAP cubes into the R language for transparent use by R users.
  • Oracle Data Mining provides an extensive set of in-database data mining algorithms that solve a wide range of business problems. These predictive models can be deployed in Oracle Database 11g and use Oracle Exadata Smart Scan to rapidly score huge volumes of data.
  • The tight integration between R, Oracle Database 11g, and Hadoop enables R users to write one R script that can run in three different environments: a laptop running open source R, Hadoop running with Oracle Big Data Connectors, and Oracle Database 11g.
  • Oracle provides single vendor support for the entire Big Data platform spanning the hardware stack, operating system, open source R, Oracle R Enterprise and Oracle Database 11g. To enable easy enterprise-wide Big Data analysis, results from Oracle Advanced Analytics can be viewed from Oracle Business Intelligence Foundation Suite and Oracle Exalytics In-Memory Machine.

Supporting Quotes

  • “Oracle is committed to meeting the challenges of Big Data analytics. By building upon the analytical depth of Oracle SQL, Oracle Data Mining and the R environment, Oracle is delivering a scalable and secure Big Data platform to help our customers solve the toughest analytics problems,” said Andrew Mendelsohn, senior vice president, Oracle Server Technologies.
  • “We work with leading edge customers who rely on us to deliver better BI from their Oracle Databases. The new Oracle R Enterprise functionality allows us to perform deep analytics on Big Data stored in Oracle Databases. By leveraging R and its library of open source contributed CRAN packages combined with the power and scalability of Oracle Database 11g, we can now do that,” said Mark Rittman, co-founder, Rittman Mead.

Supporting Resources

About Oracle

Oracle engineers hardware and software to work together in the cloud and in your data center. For more information about Oracle (NASDAQ: ORCL), visit http://www.oracle.com.

Trademarks

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Contact Info

Eloy Ontiveros
Oracle
+1.650.607.6458

eloy.ontiveros@oracle.com

Joan Levy
Blanc & Otus for Oracle
+1.415.856.5110

jlevy@blancandotus.com

Thursday Jul 14, 2011

Oracle Fusion Human Capital Management Application uses Oracle Data Mining for Workforce Predictive Analytics

Oracle's new Fusion Human Capital Management (HCM) Application now embeds predictive analytic models automatically generated by Oracle Data Mining to enrich dashboards and manager's portals with predictions about the likelihood that an employee with voluntarily leave the organization and a prediction about the employee's likely future performance. Armed with this new information that is based on historical patterns and relationships found by Oracle Data Mining, enterprises can more proactively manage their valuable employee assets and better compete. The integrated Oracle Fusion HCM Application requires the Oracle Data Mining Option to the Oracle Database. With custom predictive models generated using the customer's own data, Oracle Fusion HCM enables managers to better understand the employees, understand the key factors for each individual and even perform "What if?" analysis to see the likely impact on an employee by adjusting a critical HR factor e.g. bonus, vacation time, amount of travel, etc.

Excerpting from the Oracle Fusion HCM website and collateral: "Every day organizations struggle to answer essential questions about their workforce. How much money are we losing by not having the right talent in place and how is that impacting current projects? What skills will we need in the next 5 years that we don’t have today? How will business be impacted by impending retirements and are we prepared? Fragmented systems and bolt-on analytics are only some of the barriers that HR faces today. The consequences include missed opportunities, lost productivity, attrition, and uncontrolled operational costs. To address these challenges, Oracle Fusion Human Capital Management (HCM)puts information at your fingertips, helps you predict future trends, and enables you to turn insight into action. You will eliminate unnecessary costs, increase workforce productivity and retention, and gain a strategic advantage over your competition. Oracle Fusion HCM has been designed from the ground up so that you can work naturally and intuitively with analytics woven right into the fabric of your business processes."

 

This exceprt from the Solution Brief http://www.oracle.com/us/products/applications/fusion/fusion-hcm-know-your-people-356192.pdf describes the Predictive Analytics features and benefits: "Every day organizations struggle to answer essential questions about their workforce. How much money are we losing by not having the right talent in place and how is that impacting current projects? What skills will we need in the next 5 years that we don’t have today? How will business be impacted by impending retirements and are we prepared? Fragmented systems and bolt-on analytics are only some of the barriers that HR faces today. The consequences include missed opportunities, lost productivity, attrition, and uncontrolled operational costs. To address these challenges, Oracle Fusion Human Capital Management (HCM) puts information at your fingertips, helps you predict future trends, and enables you to turn insight into action. You will eliminate unnecessary costs, increase workforce productivity and retention, and gain a strategic advantage over your competition. Oracle Fusion HCM has been designed from the ground up so that you can work naturally and intuitively with analytics woven right into the fabric of your business processes." ....

"Predictive Analysis Imagine if you could look ahead and be prepared for upcoming workforce trends. Most organizations do not have the analytic capability to do predictive human capital analysis, yet the worker information needed to make educated forecasts already exists today. Aging populations, shifting demographics, rising and falling economies, and multi-generational issues can have a significant impact on workforce decisions – for employees, managers and HR professionals. Not being able to accurately predict how all the moving parts fit together, and where you really have potential problems, can make or break an organization. Oracle Fusion HCM gives you the ability to finally see into the future, analyzing worker performance potential, risk of attrition, and enabling what-if analysis on ways to improve your workforce. Additionally, modeling capabilities provide you with extra power to bring together information from sources unthinkable in the past. For example, imagine understanding which recruiting agencies are providing the highest-quality recruits by comparing first year performance ratings with sources of hire. Being able to see potential problems before they occur and take immediate action will increase morale, save money, and boost your competitive edge. Result: You are able to look ahead and be prepared for upcoming workforce trends."

There is a great demo of Oracle Fusion HCM Workforce Predictive Analytics that highlights the Oracle Data Mining.  This is one of the latest examples of Applications "powered by Oracle Data Mining".

 

Employee grid

When you change your paradigm and move the algorithms to the data rather than the traditional approach of extracting the data and moving it to the algorithms for analysis, it CHANGES EVERYTHING. Keep watching for additional Applications powered by Oracle's in-database advanced analytics.

About

Everything about Oracle Data Mining, a component of the Oracle Advanced Analytics Option - News, Technical Information, Opinions, Tips & Tricks. All in One Place

Search

Categories
Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today