Thursday Mar 21, 2013

Recorded Webcast: Best Practices using Oracle Advanced Analytics with Oracle Exadata

Best Practices using Oracle Advanced Analytics with Oracle Exadata

 On Demand
Launch Presentation


Join us to learn how Oracle Advanced Analytics extends the Oracle database into a comprehensive advanced analytics platform through two major components, Oracle R Enterprise and Oracle Data Mining. Using these tools with Oracle Exadata Database Machine will allow organizations to perform at their peak and find real business value within their data.

You need to visit this Oracle Exadata Webcast Main page first and submit your registration information.  Then you’ll receive an email so you can view the Webcast.  This is external so you can share with anyone can download the presentation as well.  FYI.  Charlie

<script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Thursday Feb 18, 2010

Oracle Data Mining Races with America's Cup

Oracle Data Mining was used by the performance analysis team of the BMW/Oracle Racing team in their preparation to win the America's Cup race off the coast of Spain.
BMW Oracle America Cup logo.jpg


The America's Cup has been away from U.S. shores for 15 years, the longest drought since 1851.  With the challenge of squeezing out every micro-joule of energy from the wind and with the goal of maximizing "velocity made good", the BMW Oracle Racing Team turned to Oracle Data Mining. 

"Imagine standing under an avalanche of data - 2500 variables, 10 times per second and a sailing team demanding answers to design and sailing variations immediately. This was the challenge facing the BMW ORACLE Racing Performance Analysis Team every sailing day as they refined and improved their giant 90 foot wide, 115 foot long trimaran sporting the largest hard-sail wing ever made. Using ORACLE DATA MINING accessing an ORACLE DATABASE and presenting results real time using ORACLE APPLICATION EXPRESS the performance team managed to provide the information required to optimise the giant multihull to the point that it not only beat the reigning America's Cup champions Alinghi in their giant Catamaran but resoundingly crushed them in a power display of high speed sailing. After two races - and two massive winning margins - the America's Cup was heading back to America - a triumph for the team, ORACLE and American technology."
--Ian Burns, Performance Director, BMW ORACLE Racing Team


America Cup Boat Blog pic.jpg


Visit the http://www.sail-world.com/USA/Americas-Cup:-Oracle-Data-Mining-supports-crew-and-BMW-ORACLE-Racing/68834 for pictures, videos and full information.




<script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Monday Jan 18, 2010

Fraud and Anomaly Detection Made Simple

Here is a quick and simple application for fraud and anomaly detection.  To replicate this on your own computer, download and install the Oracle Database 11g Release 1 or 2.  (See http://www.oracle.com/technology/products/bi/odm/odm_education.html for more information).  This small application uses the Automatic Data Preparation (ADP) feature that we added in Oracle Data Mining 11g.  Click here to download the CLAIMS data table.  [Download the .7z file and save it somwhere, unzip to a .csv file and then use SQL Developer data import wizard to import the claims.csv file into a table in the Oracle Database.]


First, we instantiate the ODM settings table to override the defaults.  The default value for Classification data mining function is to use our Naive Bayes algorithm, but since this is a different problem, looking for anomalous records amongst a larger data population, we want to change that to SUPPORT_VECTOR_MACHINES.  Also, as the 1-Class SVM does not rely on a Target field, we have to change that parameter to "null".  See http://download.oracle.com/docs/cd/B28359_01/datamine.111/b28129/anomalies.htm for detailed Documentation on ODM's anomaly detection.

drop table CLAIMS_SET;

exec dbms_data_mining.drop_model('CLAIMSMODEL');

create table CLAIMS_SET (setting_name varchar2(30), setting_value varchar2(4000));

insert into CLAIMS_SET values ('ALGO_NAME','ALGO_SUPPORT_VECTOR_MACHINES');

insert into CLAIMS_SET values ('PREP_AUTO','ON');

commit;


Then, we run the dbms_data_mining.create_model function and let the in-database Oracle Data Mining algorithm run through the data, find patterns and relationships within the CLAIMS data, and infer a CLAIMS data mining model from the data.  

begin

dbms_data_mining.create_model('CLAIMSMODEL', 'CLASSIFICATION',

'CLAIMS', 'POLICYNUMBER', null, 'CLAIMS_SET');

end;

/


After that, we can use the CLAIMS data mining model to "score" all customer auto insurance policies, sort them by our prediction_probability and select the top 5 most unusual claims.  

-- Top 5 most suspicious fraud policy holder claims

select * from

(select POLICYNUMBER, round(prob_fraud*100,2) percent_fraud,

rank() over (order by prob_fraud desc) rnk from

(select POLICYNUMBER, prediction_probability(CLAIMSMODEL, '0' using *) prob_fraud

from CLAIMS

where PASTNUMBEROFCLAIMS in ('2 to 4', 'more than 4')))

where rnk <= 5

order by percent_fraud desc;


Leave these results inside the database and you can create powerful dashboards using Oracle Business Intelligence EE (or any reporting or dashboard tool that can query the Oracle Database) that multiple ODM's probability of the record being anomalous times (x) the dollar amount of the claim, and then use stoplight color coding (red, orange, yellow) to flag only the more suspicious claims.  Very automated, very easy, and all inside the Oracle Database! <script type="text/javascript"> var _gaq = _gaq || []; _gaq.push(['_setAccount', 'UA-46756583-1']); _gaq.push(['_trackPageview']); (function() { var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true; ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s); })(); </script>

Powerful, Yet Simple: In-Database SQL Data Mining Functions

[Read More]
About

Everything about Oracle Data Mining, a component of the Oracle Advanced Analytics Option - News, Technical Information, Opinions, Tips & Tricks. All in One Place

Search

Categories
Archives
« April 2014
SunMonTueWedThuFriSat
  
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
   
       
Today