
HTML

HTML5 Server-Sent Events with
Micronaut.io and Java
Building a simple, reliable messaging
service
by Eric J. Bruno

April 2, 2020

I recently worked on an end-to-end IoT project where Micronaut was
chosen as the microservice framework for the cloud-side implementation.
Micronaut has built-in support for Kafka, RabbitMQ, and two HTML5
messaging paradigms: server-sent events (SSE) and WebSocket. Using
them in a meaningful way, such as for publish/subscribe or queue-based
messaging, takes a little effort. This article examines a simple,
reliable messaging system built around Micronaut’s SSE support.

As described on the project’s website, Micronaut is a modern, JVM-
based, full-stack framework for building modular, easily testable
microservice and serverless applications. Based on dependency
injection, aspect-oriented programming, and ahead-of-time compilation,
Micronaut boasts very fast start times, good throughput, and low memory
overhead. This makes Micronaut a good choice for cloud-based
microservices where instances are spun up and down quickly.

For an introduction to Micronaut, check out Jonas Havers’ article,
“Building Microservices with Micronaut,” and then peruse the well-
indexed user guide.

For this article, download a full set of source code here. The file includes
the three main projects:

The download file also includes my SSELibrary and two sample clients,
QueueSender and QueueReceiver.

Now, let’s dive into SSE messaging support.

Server-Sent Events Overview

HTML5 SSE is a server push technology that enables a browser (or any
implementing application) to receive updates from a server over HTTP or

MessageServer: the Micronaut SSE server with and
 classes, leveraging Micronaut’s built-in SSE

support

 Queue
Topic Controller

TemperatureSender: a simulated temperature device that sends
temperature readings over Micronaut SSE



Thermometer: a web application with JavaScript to listen to the
Micronaut server and receive temperature updates



HTML5 Server-Sent Events with
Micronaut.io and Java

Server-Sent Events Overview

Programming SSE with Micronaut.io

Sending SSE Messages (Client
Code)

Receiving SSE Messages (Client
Code)

The Messenger Base Class

Implementing Reliable Messaging

An End-to-End Demonstration

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/html
http://micronaut.io/
https://blogs.oracle.com/javamagazine/building-microservices-with-micronaut
https://docs.micronaut.io/snapshot/guide/index.html
http://www.ericbruno.com/Micronaut-sse-bruno.zip
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://www.oracle.com/

HTTPS. SSE works outside the browser as well, between applications
written in any language. SSE doesn’t require a separate server; it works
over HTTP and HTTPS, it is firewall-friendly, and it’s simple.

HTML5 SSE messaging is based on two main components: the
text/event-stream MIME type, where text-based messages are sent
according to a simple protocol, and the interface with
event listeners to receive messages.

For more information on SSE, check out the W3C’s HTML5 specification.
You can also read my article, “HTML5 Server-Sent Events and
Examples,” for a sample implementation.

Programming SSE with Micronaut.io

To begin with SSE, create a Micronaut class (essentially an
HTTP listener) using the Micronaut attribute. In my
project, I created two of them: one for queue-based messaging and one
for topic-based (or publish/subscribe) messaging:

The Micronaut-based implementation sits between the sender and
receiver applications, as shown in Figure 1.

Figure 1. Micronaut’s location between the sender and receiver apps

Each specifies a URI path of ,
which is combined with the base URI for your Micronaut server. I’ll
describe the base class a little later. For now, let’s focus on
the small amount of code it takes to send and receive events. Listing 1
shows the code for receiving events and setting up an REST
endpoint that specifies the name of your endpoint— or in
this case—along with a name for the queue to listen on.

Listing 1. The REST endpoint to receive queued SSE messages

EventSourceEventSource

ControllerController

@Controller@Controller

@Controller("/messageserver/api/") @Controller("/messageserver/api/")
public class QueueController extends Messenger {public class QueueController extends Messenger {

}}

@Controller("/messageserver/api") @Controller("/messageserver/api")
public class TopicController extends Messenger {public class TopicController extends Messenger {
 … …
}}

ControllerController /messageserver/api

MessengerMessenger

@Get@Get

QueueQueue TopicTopic

@Get("/queue/{name}")@Get("/queue/{name}")
public Publisher<Event<String>> index(Optional<Strinpublic Publisher<Event<String>> index(Optional<Strin
 // Determine queue to listen to // Determine queue to listen to

http://www.w3.org/TR/eventsource/
https://sweetcode.io/using-html5-server-sent-events/

The annotation indicates that this is an HTTP Get call handler, with
 and a queue name as part of the URL. When the endpoint is

invoked, looks up the destination object within a
 using the supplied name. If it’s not there, it creates a new

 object and inserts it into the using the supplied name.

Next, a Reactive Streams Publisher, which generates Event objects
using a Flowable emitter, sends messages as they become available.
With the queue paradigm, messages are saved until they are delivered to
at most one receiver. As a result, after each message is delivered, the
emitter deletes the queued message.

Sending messages to a destination from an application involves an HTTP
Post (see Listing 2). The Micronaut Post handler (indicated with the

 annotation) starts by looking up the destination by name.

Listing 2. The HTTP Post method that sends messages to a queue
destination for delivery

The annotation indicates that the expects a
 HTTP MIME type in the HTTP

header field. It’s expected that the destination name is passed as an
HTTP parameter. Once the destination object is retrieved, the message is
routed to a live receiver or persisted if none exist.

Sending SSE Messages (Client Code)

 Queue dest = getQueue(name.get()); Queue dest = getQueue(name.get());

 return Flowable.generate(() -> 0, (i, emitter) - return Flowable.generate(() -> 0, (i, emitter) -
 // Get the message first... // Get the message first...
 Message msg = dest.getNextMessage(); Message msg = dest.getNextMessage();
 String data = new String(msg.getData()); String data = new String(msg.getData());

 // Then deliver it… // Then deliver it…
 emitter.onNext(emitter.onNext(
 Event.of(data) Event.of(data)
););

 // Finally delete it after delivery... // Finally delete it after delivery...
 dest.deleteMessage(msg.getId()); dest.deleteMessage(msg.getId());
 }); });
}}

@Get@Get

queuequeue

getQueuegetQueue QueueQueue

HashMapHashMap

QueueQueue HashMapHashMap

@Post@Post

// Content-Type: text/event-stream// Content-Type: text/event-stream
@Consumes(MediaType.TEXT_EVENT_STREAM) @Consumes(MediaType.TEXT_EVENT_STREAM)
@Post("/queue/publish") @Post("/queue/publish")
public HttpResponse queue(Session session, public HttpResponse queue(Session session,
 HttpRequest<?> request, HttpRequest<?> request,
 @Body String data) { @Body String data) {
 try { try {
 HttpParameters params = request.getParameter HttpParameters params = request.getParameter
 String queueName = params.getFirst("name").o String queueName = params.getFirst("name").o
 Queue dest = getQueue(queueName); Queue dest = getQueue(queueName);

 return processSend(dest, data); return processSend(dest, data);
 } }
 catch (Exception e) { catch (Exception e) {
 e.printStackTrace(); e.printStackTrace();
 } }

 return HttpResponse.status(HttpStatus.UNAUTHORIZ return HttpResponse.status(HttpStatus.UNAUTHORIZ
 "Not authenticated") "Not authenticated")
}}

@Consumes@Consumes PostPost

text/event-streamtext/event-stream Content-TypeContent-Type

https://www.reactive-streams.org/reactive-streams-1.0.0-javadoc/org/reactivestreams/Publisher.html
https://docs.micronaut.io/1.3.0.M2/api/io/micronaut/http/sse/Event.html
http://reactivex.io/RxJava/2.x/javadoc/io/reactivex/Flowable.html

To send HTML5 server-sent events in your application, you can use the
 helper class (part of the package

you downloaded). This class works equally well with either queue- or
topic-based messages and contains only one real method:

. It takes the URL of the message server that handles
persisting and delivering messages, the message payload, and an
authentication code for optional security.

According to the HTML5 SSE specification, the message payload needs
to be formatted as a text string that contains three fields:

The text of each field must be terminated with a newline character, ,
and sent as part of the HTTP Post message, as shown in Listing 3
(some code left out for brevity) with an extra newline added to the end of
the data field.

Listing 3. The sendMessage method sends an HTTP Post according to
the HTML5 SSE specification.

Of particular importance is
, which

enables the streaming of the HTTP request body without internal
buffering. This must be set to the total message payload length, including
the newline characters. Next, the HTTP and optional

 header fields are set. Finally, the data is written
into the body of the Post. The message will be received and processed
by the message server (described later).

Receiving SSE Messages (Client Code)

Receiving HTML5 server-sent events in your application is
straightforward with the helper class as part of
the package. To use it, first implement the
interface, which defines a single method, , through which
messages are delivered (see Listing 4). Next, create an instance of the

 class, providing the URL of the message server,
whether it’s a or , and an optional authentication string in
the constructor.

SSEDataPublisherSSEDataPublisher sselibrary

sendMessagesendMessage

The event type (such as heartbeat or message), for example, 
event: messageevent: message

A retry interval in milliseconds, for example,  retry: 30000retry: 30000

The data itself, for example,  data: "actual data here..."data: "actual data here..."

\n\n

String event = "event: message\n";String event = "event: message\n";
String retry = "retry: 300000\n";String retry = "retry: 300000\n";
data = "data: " + data + "\n\n";data = "data: " + data + "\n\n";

URL url = new URL(uri.toASCIIString());URL url = new URL(uri.toASCIIString());
HttpURLConnection urlConn = HttpURLConnection urlConn =
 (HttpURLConnection)url.openConnection(); (HttpURLConnection)url.openConnection();
urlConn.setFixedLengthStreamingMode(urlConn.setFixedLengthStreamingMode(
 event.length() + retry.length() + data.length() event.length() + retry.length() + data.length()
urlConn.setDoOutput(true);urlConn.setDoOutput(true);
urlConn.setDoInput(true);urlConn.setDoInput(true);
urlConn.setRequestMethod("POST");urlConn.setRequestMethod("POST");
urlConn.addRequestProperty("Content-Type", "text/eveurlConn.addRequestProperty("Content-Type", "text/eve
urlConn.addRequestProperty("Authorization-Info", auturlConn.addRequestProperty("Authorization-Info", aut

PrintWriter out = new PrintWriter(urlConn.getOutputPrintWriter out = new PrintWriter(urlConn.getOutput
out.write(event);out.write(event);
out.write(retry);out.write(retry);
out.write(data);out.write(data);

HttpURLConnection.setFixedLengthStreamingModeHttpURLConnection.setFixedLengthStreamingMode

Content-TypeContent-Type

Authorization-InfoAuthorization-Info

SSEDataSubscriberSSEDataSubscriber

sselibrary SSECallbackSSECallback

onMessageonMessage

SSEDataSubscriberSSEDataSubscriber

TopicTopic QueueQueue

Listing 4. Using the helper classes to receive SSE messages in your
application

This is all it takes to implement a listener in your application. Let’s take a
deeper look at the helper class now.

Inside the SSEDataSubscriber class. The class
abstracts and hides the HTTP mechanics to listen for SSE messages.
Depending upon the destination type— or —the constructor
(shown in Listing 5) appends the proper API path to the message
server’s REST endpoint URL.

Listing 5. The constructor forms the proper REST endpoint URL.

Next, when the client application calls , the supplied
destination name and callback are stored, and the is started.
Execution moves to the method, as shown in Listing 6.

Listing 6. The SSEDataSubscriber extended Thread.run method
implementation

SSEDataSubscriber sse = new SSEDataSubscriber(SSEDataSubscriber sse = new SSEDataSubscriber(
 serverURL, SSEDataSubscriber.DestinationType serverURL, SSEDataSubscriber.DestinationType
sse.subscribe(destinationName, this);sse.subscribe(destinationName, this);

// ...// ...

@Override@Override
public void onMessage(String queue, String data) {public void onMessage(String queue, String data) {
 // ... // ...
}}

SSEDataSubscriberSSEDataSubscriber

SSEDataSubscriberSSEDataSubscriber

QueueQueue TopicTopic

public SSEDataSubscriber(String serverURI,public SSEDataSubscriber(String serverURI,
 DestinationType type, DestinationType type,
 String authCode) { String authCode) {
 this.authCode = authCode; this.authCode = authCode;
 if (type == DestinationType.QUEUE) { if (type == DestinationType.QUEUE) {
 this.serverURL = serverURI + "/api/queue/"; this.serverURL = serverURI + "/api/queue/";
 } }
 else { else {
 this.serverURL = serverURI + "/api/topic/"; this.serverURL = serverURI + "/api/topic/";
 } }
}}

subscribesubscribe

ThreadThread

Thread.runThread.run

URL url = new URL(serverURL);URL url = new URL(serverURL);
URLConnection conn = url.openConnection();URLConnection conn = url.openConnection();
conn.setDoOutput(true);conn.setDoOutput(true);
conn.setConnectTimeout(0);conn.setConnectTimeout(0);

BufferedReader rd = BufferedReader rd =
 new BufferedReader(new BufferedReader(
 new InputStreamReader(conn.getInputStream(new InputStreamReader(conn.getInputStream(

String line;String line;
while ((line = rd.readLine()) != null) {while ((line = rd.readLine()) != null) {
 if (line != null && line.length() > 0) { if (line != null && line.length() > 0) {
 // Did we get a heartbeat or useful data? // Did we get a heartbeat or useful data?
 if (line.startsWith(":")) { if (line.startsWith(":")) {
 // heartbeat message... // heartbeat message...
 } }
 else if (line.startsWith("data:")) { else if (line.startsWith("data:")) {
 // Received data, send to the client's c // Received data, send to the client's c
 if (callback != null) { if (callback != null) {
 callback.onMessage(destination, line callback.onMessage(destination, line
 } }
 } }

A connection to the message server is created within this thread
specifically to handle messages for the given destination. Once an HTTP
message is received, it’s determined to be either a heartbeat (indicated
by an empty message) or one that contains actual data (indicated by the
presence of the text). Data is delivered to the client
asynchronously via the method on its supplied callback.

Now, let’s go back and examine how the message server microservice
(implemented with Micronaut.io) handles and delivers messages.

The Messenger Base Class

Returning our attention to the and
 classes, note that both inherit from the base class,

. It’s here that the method (as referenced
earlier in Listing 2) is implemented for both and
destination types (see Listing 7). First, the data is split by newline
characters (remember those were added when the SSE message was
sent, per the specification).

Listing 7. The Messenger.processSend method within the message
server microservice

The message fields are pulled from the message text, and the
destination’s method is called with the message data. This
method is defined in the abstract base class but differs in
implementation in both of its extending classes, and . Let’s
take a look at these now.

Inside the Topic class. The workings of a destination are simple:
Each message sent is delivered to every active listener, a one-to-many
relationship (see Figure 2).

 } }
}}

data:data:

onMessageonMessage

QueueControllerQueueController

TopicControllerTopicController

MessengerMessenger processSendprocessSend

TopicTopic QueueQueue

public HttpResponse processSend(Destination dest, Stpublic HttpResponse processSend(Destination dest, St
 String[] lines = data.split(System.getProperty(" String[] lines = data.split(System.getProperty("
 try { try {
 for (String line: lines) { for (String line: lines) {
 if (line.contains("event:")) { } if (line.contains("event:")) { }
 else if (line.contains("id:")) { } else if (line.contains("id:")) { }
 else if (line.contains("data:")) { else if (line.contains("data:")) {
 int start = line.indexOf("data:")+"d int start = line.indexOf("data:")+"d
 data = line.substring(start).trim() data = line.substring(start).trim()
 dest.addMessage(data); dest.addMessage(data);
 } }
 } }

 return HttpResponse.ok(dest.getName()); return HttpResponse.ok(dest.getName());
 } }
 catch (Exception e) { catch (Exception e) {
 return HttpResponse.serverError(e.toString(return HttpResponse.serverError(e.toString(
 } }
}}

data:data:

addMessageaddMessage

DestinationDestination

QueueQueue TopicTopic

TopicTopic

Figure 2. With topic-based publish/subscribe messaging, each message is delivered to

every active subscriber.

When a message is sent, the method creates a
object to encapsulate the message payload (text), stores the in
the object’s member variable, and signals all
threads waiting on the ’s monitor object, as shown in Listing 8.

Listing 8. Handling an incoming topic message

Every client that calls the message server’s REST endpoint to receive
topic messages ends up calling on the class,
where it waits on a monitor until it’s signaled (see Listing 9) when a
message is available.

Listing 9. The Topic.getNextMessage method waits until a message
arrives for the destination.

That’s it for topics; the class, however, is more involved.

Inside the Queue class. The biggest differences between a and
 are that with a

addMessageaddMessage MessageMessage

MessageMessage

TopicTopic lastMessagelastMessage

TopicTopic

public boolean addMessage(String msgData) {public boolean addMessage(String msgData) {
 Long messageId = System.currentTimeMillis(); Long messageId = System.currentTimeMillis();
 Message msg = new Message(messageId, msgData); Message msg = new Message(messageId, msgData);
 lastMessage = msg; lastMessage = msg;

 // Notify ALL listeners of the message // Notify ALL listeners of the message
 synchronized (topicMonitor) { synchronized (topicMonitor) {
 topicMonitor.notifyAll(); topicMonitor.notifyAll();
 } }
 return true; return true;
}}

getNextMessagegetNextMessage TopicTopic

public Message getNextMessage() throws InterruptedExpublic Message getNextMessage() throws InterruptedEx
 synchronized (topicMonitor) { synchronized (topicMonitor) {
 topicMonitor.wait(); topicMonitor.wait();
 } }
 return lastMessage; return lastMessage;
}}

QueueQueue

TopicTopic

QueueQueue QueueQueue

Messages must be delivered to at most one listener (see Figure 3).

Messages must be stored even when no clients are listening for
eventual delivery.



Figure 3. With a queue, each message sent is delivered to exactly one listener.

 is invoked when a client calls the message
server’s REST endpoint (shown earlier in Listing 1). The messages
themselves are never kept in memory; only message IDs are (see
Listing 10). Because queued messages can stay in a queue indefinitely
—until a listener finally shows interest in the associated queue—storing
them all in memory could potentially consume all of it. The message data
is persisted instead.

Listing 10. The caller is blocked while waiting for the next queued
message ID on the destination.

The object is implemented as a
. The call to is

blocked until a queued entry is available, at which time the code removes
and returns the head of the queue to only one blocked caller. With the
message ID in hand, the message payload is retrieved from the
persistent store (part of the reliability of queue-based messaging). Finally,
once the message is delivered, its message ID is deleted along with the
persisted message body.

Implementing Reliable Messaging

The interface is defined to hide the details of
how messages are actually persisted. The object uses the
Factory pattern to obtain an instance of a persistence implementation
(see Listing 11).

Listing 11. The Queue object uses the Factory pattern to get the
persistence implementation.

Queue.getNextMessageQueue.getNextMessage

public Message getNextMessage() throws InterruptedExpublic Message getNextMessage() throws InterruptedEx
 // Blocking call // Blocking call
 Long messageId = messageIds.take(); Long messageId = messageIds.take();

 // Load the message data using the ID // Load the message data using the ID
 Message message = persistance.getMessage(getName Message message = persistance.getMessage(getName
 return message; return message;
}}

messageIdsmessageIds

java.util.concurrent.ArrayBlockingQueuejava.util.concurrent.ArrayBlockingQueue taketake

MessagePersistenceMessagePersistence

QueueQueue

public class Queue extends Destination {public class Queue extends Destination {
 final protected MessagePersistance persistance = final protected MessagePersistance persistance =
MessagePersistanceFactoryMessagePersistanceFactory
 .getInstance().getMessagePersistance(); .getInstance().getMessagePersistance();

 //... //...
}}

The Factory pattern can be configured (via dependency injection, a
configuration file, an environment variable, and so on) to load any
persistence implementation, so long as it implements the

 interface. Let’s examine one as an example.

Using a NoSQL database for persistence. The class
(in the download package) implements the
interface and uses Oracle NoSQL Database to store and retrieve
messages by message ID. Because the class uses
the Factory pattern and depends only on this interface, you can easily
swap out implementations, such as a cloud-based NoSQL database.

Messages are stored using name-value pairs, where the key (the name)
is the destination name and message ID combination. The value is the
message payload, encoded as a byte array (see Listing 12).

Listing 12. Saving messages to the NoSQL datastore

Retrieving a message is just as straightforward (see Listing 13). First,
the key is assembled and used to retrieve the object. This object,
if found, is used to retrieve the stored byte array representing the
message payload. The result is transformed back into a object
and returned.

Listing 13. Retrieving the message payload from the key (destination
name and message ID)

When the message server is first started, it uses the NoSQL database to
load all stored message IDs back into memory. To do this, first

 iterates all of the destination’s names associated
with persisted messages (see Listing 14). The call to then
creates objects for each destination name (only queues are
persisted, so this is safe).

Listing 14. Retrieving all destination names from the NoSQL database

MessagePersistenceMessagePersistence

MessageNoSQLMessageNoSQL

MessagePersistenceMessagePersistence

QueueControllerQueueController

public boolean saveMessage(String destinationName, public boolean saveMessage(String destinationName,
 Long messageId, Long messageId,
 String message) throws E String message) throws E
 String idStr = messageId.toString(); String idStr = messageId.toString();
 store.put(Key.createKey(destinationName, idStr store.put(Key.createKey(destinationName, idStr
 Value.createValue(message.getBytes() Value.createValue(message.getBytes()
 return true; return true;
}}

ValueValue

MessageMessage

public Message getMessage(String destinationName, Lopublic Message getMessage(String destinationName, Lo
 String idStr = messageId.toString(); String idStr = messageId.toString();
 Key key = Key.createKey(destinationName, idStr) Key key = Key.createKey(destinationName, idStr)
 ValueVersion value = store.get(key); ValueVersion value = store.get(key);
 if (value == null || value.getValue() == null if (value == null || value.getValue() == null
 return null; return null;
 } }

 Value val = value.getValue(); Value val = value.getValue();
 String data = new String(val.getValue()); String data = new String(val.getValue());
 return new Message(messageId, data); return new Message(messageId, data);
}}

QueueControllerQueueController

getQueuegetQueue

QueueQueue

private void loadSavedMessages() {private void loadSavedMessages() {
 ArrayList<String> queueNames = messageDB.getStor ArrayList<String> queueNames = messageDB.getStor
 for (String queueName: queueNames) { for (String queueName: queueNames) {
 // Get the queue (loads all queued messages // Get the queue (loads all queued messages

The method (implemented in the base class,)
constructs a object with the given destination name, which loads
all message IDs for that queue from the database in the constructor (see
Listing 15).

Listing 15. Loading all message IDs for the queue from the database

In this sample implementation, the database is assumed to be running
locally (127.0.0.1) on port 5000, with the name . You can
override this via a configuration file.

Running Oracle NoSQL Database. To run the SSE message server
code for this article, download and install the Oracle NoSQL Database
Community Edition. After installing the database, modify the

 file to set for your computer and set
 to 5000. To run the database, I use the following

command:

The last parameter disables security to make it easier to run in this
example implementation, but it should not be used in a production
environment. Once the database is started, you’ll see output similar to
the following:

You can now move on to running the SSE message server, as shown in
the next section.

An End-to-End Demonstration

You can start the SSE message server with Micronaut via the following
command (remember to start the NoSQL database first):

If the command is successful, you should see log output ending with a
line similar to this:

 Queue dest = getQueue(queueName); Queue dest = getQueue(queueName);
 } }
}}

getQueuegetQueue MessengerMessenger

QueueQueue

public Queue(String name) {public Queue(String name) {
 // load message IDs // load message IDs
 ArrayList<Long> ids = persistance.getMessageIds ArrayList<Long> ids = persistance.getMessageIds
 if (ids != null) { if (ids != null) {
 this.messageIds.addAll(ids); this.messageIds.addAll(ids);
 } }
}}

kvstore

config.xml hostname

registryPort

> java -jar lib/kvstore.jar kvlite -secure-config di

Opened existing kvlite store with config:
-root ./kvroot -store kvstore -host Dolce -port 5000

> java -jar target/MessageServer-1.0-SNAPSHOT.jar

12:53:28.857 [main] INFO io.micronaut.runtime.Micron

https://www.oracle.com/database/technologies/nosql-database-server-downloads.html

To implement a queue receiver, use the helper class
, which takes the Micronaut server URI, the

destination type (or), and an optional authentication code
as parameters in its constructor. Once it is created, listen on a queue by
calling the method (see Listing 16).

Listing 16. Subscribing to a queue

In this case, the calling class implements the interface
and passes a reference to itself in the call to . As messages
arrive on the queue, the object’s method will be called with
the payload. To see how this is achieved, review Listing 6 earlier in this
article.

To send messages to a queue, use the class
(covered earlier in Listing 3), as shown in Listing 17.

Listing 17. Sending messages to a queue

That’s all it takes! Because the same helper classes work to send and
receive messages to queues and topics, the Java code for both types of
applications is very similar. Let’s take a look at how to create a JavaScript
listener to display dynamically updating data inside a web application.

Implementing a JavaScript SSE listener. This final sample uses a topic
to send simulated temperature updates, updated dynamically on a web
page using SSE. The Java temperature sender is similar to the queue
sender explored in the previous section. The listener, however, is
JavaScript code embedded within a simple HTML-based web page.

First, create the instance, as shown in Listing 18.

Listing 18. Creating an EventSource instance

Next, set up an error handler to help debug and reset the connection, as
shown in Listing 19.

Listing 19. Setting up error handling

Finally, implement the message listener function (where the payload is
delivered), as shown in Listing 20.

Listing 20. Implementing the message listener function

SSEDataSubscriberSSEDataSubscriber

QueueQueue TopicTopic

subscribesubscribe

SSEDataSubscriber sse = new SSEDataSubscriber(SSEDataSubscriber sse = new SSEDataSubscriber(
 serverUrl, SSEDataSubscriber.DestinationType serverUrl, SSEDataSubscriber.DestinationType
sse.subscribe(queueName, this);sse.subscribe(queueName, this);

SSECallbackSSECallback

subscribesubscribe

onMessageonMessage

SSEDataPublisherSSEDataPublisher

String url = serverURI + "/api/queue/publish?name=" String url = serverURI + "/api/queue/publish?name="
SSEDataPublisher.sendMessage(url, data, authCode);SSEDataPublisher.sendMessage(url, data, authCode);

EventSourceEventSource

var source = new EventSource(uri+"/messageserver/apivar source = new EventSource(uri+"/messageserver/api

source.onerror = function(event) {source.onerror = function(event) {
 console.log("SSE onerror " + event); console.log("SSE onerror " + event);

 // Wait 1 second and reconnect // Wait 1 second and reconnect
 setTimeout(function() { setupEventSource(); }, 1 setTimeout(function() { setupEventSource(); }, 1
}}

Eric J. Bruno

In this example, is an HTML element used to display
the updating temperature value. When the SSE message server is
running, with a sender publishing data to the temp1 topic, the web page
will look similar to Figure 4.

Figure 4. A web application with simple JavaScript to update the temperature reading

Note that due to cross-site scripting security, browsers such as Chrome
will block data from URLs other than the one serving the web page.
There are ways to deal with this, but the easy way for development
purposes is to start Chrome from the command line with the following
parameters:

On Windows, replace with .

As an even simpler example, you can open your browser normally and
then enter the proper URL for a valid SSE destination, such as

.
As a result, the browser will append each data update to the page,
although you’ll eventually need to scroll to see the latest updates.

Conclusion

In this article, I demonstrated how to build a simple, reliable messaging
system that is built around Micronaut’s SSE support and supports queue-
based messaging as well as topic-based (or publish/subscribe)
messaging. Because Micronaut provides very fast start times, good
throughput, and low memory overhead, it is a good choice for cloud-
based microservices where instances are spun up and down quickly.

source.onmessage = function(event) {source.onmessage = function(event) {
 var tempGauge = document.getElementById('tempera var tempGauge = document.getElementById('tempera
 tempGauge.innerHTML = event.data; tempGauge.innerHTML = event.data;
}}

tempGaugetempGauge divdiv

google-chrome --disable-web-security --user-data-dir

google-chrome chrome.exe

http://localhost:8080/messageserver/api/topic/topic1

https://blogs.oracle.com/javamagazine/eric-j-bruno

Eric J. Bruno is a lead real-time engineer at Perrone
Robotics, where he’s teaching cars to drive
themselves. He has 25 years’ experience in the
information technology community as an enterprise
architect, developer, and analyst with expertise in
large-scale distributed software design.

Share this Page

 
Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/eric-j-bruno
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

