
Java Magazine

Understanding the constant pool inside a
Java class �le

Andrew Binstock | February 18, 2022

Taking a deep dive into the class �le’s symbol table

Download a PDF of this article

The venerable class �le is the JVM’s fundamental unit of execution. Every Java class produces a �le that

contains considerable data as well as executable bytecodes that implement the behavior. Class �les are

generated by the javac compiler and can be run in the following three modes:

When it comes time to execute a speci�c class, the JVM locates the class �le and loads it. The loading

process involves parsing the �le into its various �elds and then placing the parsed data in a convenient

format into the JVM’s method area. This is an area shared across threads where variables and methods,

among other items, can be looked up.

The class �le format has changed li�le over the releases of Java: It consists of a �le header, some bytes

identifying the Java version that generated the class �le, a signi�cant area called the constant pool (which

I discuss shortly) additional data �elds the methods and �nally a series of a�ributes

Coding, JVM Internals, Tools

Standalone mode, provided they contain a main() method

Bundled with other classes into JAR, EAR, or WAR �les, which are simply zipped collections of classes

and data items

Bundled into modules and then into executable images via tools such as jlink

Java Magazine

https://blogs.oracle.com/javamagazine/authors/Blog-Author/CORE21AD08D7A0EE4676B8F70272174CF077/andrew-binstock
https://blogs.oracle.com/content/published/api/v1.1/assets/CONT03294E6684594E4997D3E5EA797C475B/native/Understanding+the+constant+pool+inside+a+Java+class+file.pdf?channelToken=4d6a6a00a153413e9a7a992032379dbf
https://blogs.oracle.com/javamagazine/category/jm-coding
https://blogs.oracle.com/javamagazine/category/jm-jvm-internals
https://blogs.oracle.com/javamagazine/category/jm-tools
https://www.facebook.com/dialog/share?app_id=209650819625026&href=/javamagazine/post.html
https://twitter.com/share?url=/javamagazine/post.html
https://www.linkedin.com/shareArticle?url=/javamagazine/post.html
https://blogs.oracle.com/javamagazine/post/placeholder.html
https://blogs.oracle.com/
https://blogs.oracle.com/javamagazine/

I discuss shortly), additional data �elds, the methods, and �nally a series of a�ributes.

Over the years, the changes brought by various releases have not altered the layout of the class �le, but

they have changed the data items and especially the a�ributes stored in the class �le. Because the original

layout was extensible, these changes happened without disruption. To ensure safe execution, the bytes

identifying the Java version in the �le prevent older versions of the runtime from executing class �les with

newer features.

Introducing the constant pool

One of the most important sections of a class �le is the constant pool, which is a collection of entries that

serve as a symbol table of sorts for the class. The constant pool contains the names of classes that are

referenced, initial values of strings and numeric constants, and other miscellaneous data crucial to proper

execution.

You can learn a lot by looking at the constant pool for the following simple class:

To see the constant pool, use the javap class �le disassembler included in the JDK. Running javap with

the verbose -v option prints a wealth of detail about the class, including the constant pool and the

bytecode for all the methods. Running javap -v Hello.class, I get a listing of 83 lines. Here is the

constant pool portion of that output.

class Hello {
 public static void main(String[] args) {
 for(int i = 0; i < 10; i++)
 System.out.println("Hello from Hello.main!");
 }
}

Copy code snippet

 #1 = Methodref #6.#16 // java/lang/Object."<init>":()V
 #2 = Fieldref #17.#18 // java/lang/System.out:Ljava/io/Pr
 #3 = String #19 // Hello from Hello.main!
 #4 = Methodref #20.#21 // java/io/PrintStream.println:(Lja
 #5 = Class #22 // Hello
 #6 = Class #23 // java/lang/Object
 #7 = Utf8 <init>
 #8 = Utf8 ()V
 #9 = Utf8 Code
 #10 = Utf8 LineNumberTable
 #11 = Utf8 main
 #12 = Utf8 ([Ljava/lang/String;)V
#13 Utf8 StackMapTable

https://docs.oracle.com/en/java/javase/17/docs/specs/man/javap.html

The format of this data will look familiar from other discussions in this magazine, especially in JVM-

focused articles by Ben Evans, such as “Understanding Java method invocation with invokedynamic.”

The numbers on the left are simply the entry number for the items. Note that the �rst entry is #1, not #0.

There is a dummy entry implicit at slot 0 that is never referenced. The second column gives the type of

entry, the third column contains the value of the entry, and the data after the // characters is javap’s

helpful way of telling you what’s being referred to. I’ll clarify this shortly.

Perhaps the most striking thing about this listing is the frequency of entry type Utf8, which is an internal-

only format used in the Java class to represent string data. (Technically, this entry slightly diverges from

the UTF-8 standard to eliminate 0x00 bytes; for all other intents, it’s a UTF-8 encoding.)

All the other entries in this constant pool eventually resolve to one of the Utf8 entries. Let’s see that in

practice: There are four entries of type Class. Let’s take the �rst one (entry #5). That entry points to entry

#22, which is a Utf8 entry with the value Hello, which is the name of the class being examined. As

mentioned in the previous paragraph, by showing it after the double slashes of entry #5javap, helpfully

saves you from having to jump around to get this value.

The internal referencing between entries can become complicated. For example, the MethodRef entry for

#4 is a reference to a method. It eventually points to the println() method, which is called in the

original code. The MethodRef entry points to two additional entries, as follows:

When you string together the class name, method name, and signature, you get the following output,

 #13 = Utf8 StackMapTable
 #14 = Utf8 SourceFile
 #15 = Utf8 Hello.java
 #16 = NameAndType #7:#8 // "<init>":()V
 #17 = Class #24 // java/lang/System
 #18 = NameAndType #25:#26 // out:Ljava/io/PrintStream;
 #19 = Utf8 Hello from Hello.main!
 #20 = Class #27 // java/io/PrintStream
 #21 = NameAndType #28:#29 // println:(Ljava/lang/String;)V
 #22 = Utf8 Hello
 #23 = Utf8 java/lang/Object
 #24 = Utf8 java/lang/System
 #25 = Utf8 out
 #26 = Utf8 Ljava/io/PrintStream;
 #27 = Utf8 java/io/PrintStream
 #28 = Utf8 println
 #29 = Utf8 (Ljava/lang/String;)V

Copy code snippet

First is #20, which is the class name. This name is shown using the JVM’s internal format in which the

dots that usually separate the parts of a class’s name are replaced by forward slashes.

The second is #21, which points to a NameAndType record. This record points to two other Utf8
entries, which give the name of the method and its signature.

https://blogs.oracle.com/javamagazine/post/understanding-java-method-invocation-with-invokedynamic

which is also shown to the right of the double slashes for slot #4:

java/io/PrintStream.println(Ljava/lang/String;)V

(I removed the colon, which was inserted by javap for readability.) This string is worthy of careful

examination. The �rst thing that stands out is the part in parentheses that begins with an L and ends with

a semicolon. The parentheses express the type of parameters the method accepts. The descriptors for

primitive types are

If the code used the form of println() that accepted a �oat, the signature would be (F)V. This example,

however, sends a string to println(); the string is not a primitive but rather an object. Objects are

expressed by L followed by the name of the class that de�nes their type, followed by a semicolon.

Therefore, the method expects to be passed a string. The method returns nothing, which is

communicated by V (for void) after the closing parenthesis.

Note that arrays are shown using opening brackets for each dimension, followed by the type of the array.

The signature for main(), which takes an array of strings, is

([Ljava/lang/String;)V

Note the opening bracket inside the opening parenthesis.

Returning to the program, you’ll notice that the Java source code called System.out.println(), while

the function pointed to here is Java.io.PrintStream.println(). That is because System.out is a

static �eld. It’s of type PrintStream, whose println() static method is being called here. This

transmutation is conveyed by entry #2 in the constant pool.

Now, look at entry #1, a MethodRef (method reference) to an <init>()V method in

java.lang.Object. This is the default constructor that the compiler inserts into classes that don’t

declare their own constructor. When a class fails to have a constructor, the compiler goes to its superclass

looking for one. If the superclass doesn’t have one, the JVM looks at that superclass’ superclass, and so on

up the chain. If no superclass has a constructor, the compiler will eventually get to the topmost object in

the hierarchy, java.lang.Object, and use its constructor.

The constructor has the name <init>, which you’ll notice is a name that cannot appear in Java code,

because method names are not allowed to begin with the < symbol. This last constraint is a signal that

this call was inserted by the compiler and not derived from user code. An interesting side note is that the

compiler creates this constructor for a class automatically—even for a class whose only method is the

B (byte)

C (char)

D (double)

F (�oat)

I (int)

J (long)

S (short)

Z (Boolean)

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/System.html#out

static main(), meaning the constructor is not called.

In the bytecode, the Utf8, MethodRef, and so forth are single-byte tags that identify the record that

follows. There are more tags than shown in the listing. These include tags for each of the primitive types

(typically used to initialize static versions of the data item), method handles, module and package entries,

and specialized entries to handle invokedynamic instructions. The complete list of constant pool tags is

in the JVM Speci�cation document section 4.4.

Constant pool entries refer to each other using a two-byte unsigned value. In theory, this would imply that

the largest constant pool could have 65,534 entries (the unsigned two-byte maximum less the initial

dummy entry), but such is not the case. Entries for longs and doubles occupy two slots in the constant

pool, with the second slot being unused and inaccessible (this is enforced by the JVM).

This design added complexities to JVM implementations and is gently lamented in the JVM

Speci�cation document section 4.4.5: “In retrospect, making 8-byte constants take two constant pool

entries was a poor choice.” This kind of candor makes the documentation a pleasure to read.

In practice, constant pools rarely if ever threaten to breach the maximum. For example, the

java.math.BigDecimal class is a massive entity with an amazing 167 methods and 37 initialized �elds.

Its constant pool has 1,533 entries, which is a lot but nowhere near the permi�ed maximum.

Using the constant pool

Earlier in this article, I referred to the constant pool as a symbol table of sorts, which is how it’s used by

executing methods. Look at the bytecode for the main() method in the previous program.

Methods consist of one-byte instructions (hence the term bytecode) followed by zero or more arguments.

The arguments are either values or references to entries in the constant pool. This listing, which is

generated by javap, consists of a left column that shows the location of the current bytecode instruction

as an o�set from 0, a second column showing the bytecode instruction, and a third column that contains

 0: iconst_0
 1: istore_1
 2: iload_1
 3: bipush 10
 5: if_icmpge 22
 8: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream;
11: ldc #3 // String Hello from Hello.main!
13: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/Strin
16: iinc 1, 1
19: goto 2
22: return

Copy code snippet

https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.4
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.4.5

any arguments; also, as before, javap has put helpful resolutions of values behind double slashes.

The �rst three instructions load a zero, which is the count of completed loops, into a local variable and

onto the Java stack, and then bipush pushes a 10 onto the stack. This 10 represents the maximum

number of loop iterations in the original Java code. A comparison between the two is made, as follows:

The next instruction, ldc, loads the string located at constant pool entry #3 and puts it onto the stack.

The following instruction, invokevirtual, calls the println() method of java.io.PrintStream as

speci�ed in constant pool entry #4. Per the previous discussion of this entry, it expects a string, which it

�nds on the stack of the calling function. After printing the string, the remaining code increments the

counter previously initialized to 0 and runs through the loop again.

The use of comparisons and jumps that depend on the result of the compare instruction is how the Java

compiler encodes loops. This will be familiar to assembly language programmers.

Class �les in practice

Everything I’ve described so far is roughly how the JVM works in its initial parse of a class and �rst run

through the main() method. Subsequent runs are far more optimized than that process. Why? A

performant JVM could not a�ord on every iteration of the loop to look up constant pool entry #2, then

from there jump to entries #17 and #18, and from there go to fetch the pointed-to object.

In fact, there is a runtime constant pool, which is an optimized representation of the parsed entries. For

example, it might replace the reference of entry #2 with a direct link to the object to be fetched, saving

several lookups in the process.

Likewise, method lookups are accelerated by a variety of tricks. For example, let’s return to the

BigDecimal class I mentioned earlier. It has 137 methods, which are accessed in the method area of the

JVM, where they were placed by the class loader.

A problem is that the constant pool tells you only the name and the signature of the method. To �nd it

initially, the JVM must search to �nd the method it’s looking for. To accelerate the search, the JVM creates

a data structure called the MTable (for method table), which holds the name of the methods and pointers

to their bytecodes. The MTable also contains the names of all methods in superclasses with the

corresponding pointers. In this way, the climb through superclasses discussed earlier is resolved by a

single lookup.

The MTable can be used for other things. For example, I’m presently working on the Jacobin project,

which is writing a more-than-minimal JVM in the Go language. The project uses the MTable for purposes

such as redirecting the Jacobin JVM to use a function wri�en in Go rather than in its Java counterpart.

This is done by sticking an entry into the MTable using the method name and signature as the key and a

If the counter is greater than or equal to 10, the code jumps to instruction #22, which is a return
statement that exits the function. Because the function being returned is main(), it ends the program.

However, if 10 iterations of the loop have not occurred, the logic drops to the following getstatic
instruction at position #8, which fetches the object System.out. (All that the bytecode knows is that

it’s fetching a �eld speci�ed by constant pool entry #2.) Looking this up, as shown previously, refers to

constant pool entries #17 and #18, which point to a java.io.PrintStream object named out.

https://github.com/platypusguy/jacobin

 Previous Post Next Post

This is done by sticking an entry into the MTable using the method name and signature as the key and a

pointer to the Go code as the value. This is useful especially for operating system APIs (which are often

wri�en in native code) and for performance optimization.

Conclusion

Navigating decompiled Java classes is a useful skill and the mark of an advanced understanding of Java

programming. It is particularly helpful when a bit of code does not do what you expect. By popping open

the class with javap and examining the bytecode, you can tell how the compiler interpreted your

instructions.

By the way, many of the behind-the-scenes details exposed by Java Magazine quizzes can be understood

by using this approach though, of course, you can’t run javap while taking the certi�cation exam.

Dig deeper

Andrew Binstock

Andrew Binstock (@platypusguy) was formerly the editor in chief of Java Magazine. Previously, he was

the editor of Dr. Dobb's Journal. He co-founded the company behind the open-source iText PDF library,

which was acquired in 2015. His book on algorithm implementation in C went through 16 printings before

joining the long tail. Previously, he was the editor in chief of UNIX Review and, earlier, the founding editor

of the C Gaze�e. He lives in Silicon Valley with his wife. When not coding or editing, he studies piano.

Understanding Java method invocation with invokedynamic

Mastering the mechanics of Java method invocation

Behind the scenes: How do lambda expressions really work in Java?

How the JVM locates, loads, and runs libraries

Containerizing apps with jlink

Four common pitfalls of the BigDecimal class and how to avoid them

https://blogs.oracle.com/javamagazine/post/java-sentiment-analysis-multisentence-text-block
https://blogs.oracle.com/javamagazine/post/java-jdk-18-evolution-valhalla-panama-loom-amber
https://www.twitter.com/platypusguy
https://blogs.oracle.com/javamagazine/post/understanding-java-method-invocation-with-invokedynamic
https://blogs.oracle.com/javamagazine/post/mastering-the-mechanics-of-java-method-invocation
https://blogs.oracle.com/javamagazine/post/behind-the-scenes-how-do-lambda-expressions-really-work-in-java
https://blogs.oracle.com/javamagazine/post/how-the-jvm-locates-loads-and-runs-libraries
https://blogs.oracle.com/javamagazine/post/containerizing-apps-with-jlink
https://blogs.oracle.com/javamagazine/post/four-common-pitfalls-of-the-bigdecimal-class-and-how-to-avoid-them

© 2022 Oracle Site Map Privacy / Do Not Sell My Info Cookie Preferences Ad Choices Careers

About

Careers

Developers

Investors

Partners

Startups

Resources

for
Analyst
Reports

Best CRM

Cloud
Economics

Corporate
Responsibility

Diversity and
Inclusion

Security
Practices

Why Oracle

What is
Customer
Service?

What is ERP?

What is
Marketing
Automation?

What is
Procurement?

What is Talent
Management?

What is VM?

Learn

Try Oracle
Cloud Free Tier

Oracle
Sustainability

Oracle COVID-

19 Response

Oracle and
SailGP

Oracle and
Premier
League

Oracle and Red
Bull Racing
Honda

What's New

US Sales
1.800.633.0738

How can we help?

Subscribe to
Oracle Content

Try Oracle Cloud
Free Tier

Events

News

Contact Us

https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
https://www.oracle.com/legal/privacy/privacy-choices.html
https://www.oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/corporate/careers/
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/careers/
https://developer.oracle.com/
https://investor.oracle.com/home/default.aspx
https://www.oracle.com/partner/
https://www.oracle.com/startup/
https://www.oracle.com/corporate/analyst-reports.html
https://www.oracle.com/cx/what-is-crm/
https://www.oracle.com/cloud/economics/
https://www.oracle.com/corporate/citizenship/
https://www.oracle.com/corporate/careers/diversity-inclusion/
https://www.oracle.com/corporate/security-practices/
https://www.oracle.com/cx/service/what-is-customer-service/
https://www.oracle.com/erp/what-is-erp/
https://www.oracle.com/cx/marketing/automation/what-is-marketing-automation/
https://www.oracle.com/erp/what-is-procurement/
https://www.oracle.com/human-capital-management/talent-management/what-is-talent-management/
https://www.oracle.com/cloud/compute/virtual-machines/what-is-virtual-machine/
https://www.oracle.com/cloud/free/?source=:ow:o:h:nav:050120SiteFooter&intcmp=:ow:o:h:nav:050120SiteFooter
https://www.oracle.com/solutions/green/
https://www.oracle.com/corporate/covid-19.html
https://www.oracle.com/sailgp/
https://www.oracle.com/premier-league/
https://www.oracle.com/redbullracing/
tel:18006330738
https://www.oracle.com/corporate/contact/
https://go.oracle.com/subscriptions
https://www.oracle.com/cloud/free/?source=:ow:o:h:nav:050120SiteFooter&intcmp=:ow:o:h:nav:050120SiteFooter
https://www.oracle.com/events/
https://www.oracle.com/news/

