
CODING

Four common pitfalls of the
BigDecimal class and how to
avoid them
When doing currency calculations in
Java, you might use
java.math.BigDecimal—but beware of
some of that class’s unique
challenges.
by Frank Kiwy

September 11, 2020

When doing business calculations in Java, especially for
currencies, you would preferably use the 

 class to avoid the problems related
to floating-point arithmetic, which you might experience if you’re
using one of the two primitive types: float or double (or one of
their boxed type counterparts).

Indeed, the  class contains a number of methods
that can meet most of the requirements of common business
calculations.

However, I would like to draw your attention to four common
pitfalls of the  class. They can be avoided when
you use the regular BigDecimal API and when you use a
new customized class that extends .

So, let’s start with the regular BigDecimal API.

Pitfall #1: The double constructor

Consider the following example:

java.math.BigDecimaljava.math.BigDecimal

BigDecimalBigDecimal

BigDecimalBigDecimal

BigDecimalBigDecimal

BigDecimal x = new BigDecimal(0.1);BigDecimal x = new BigDecimal(0.1);  
System.out.println("x=" + x);System.out.println("x=" + x);

Four common pitfalls of the
BigDecimal class and how to
avoid them

Pitfall #1: The double
constructor

Pitfall #2: The static
valueOf(double) method

Pitfall #3: The
equals(bigDecimal) method

Pitfall #4: The
round(mathContext) method

A new class extending
BigDecimal

Double constructors

Adding new methods

Handling rounding issues

A real-world example

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

 
Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/coding-2
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/


Here’s the console output:

As you can see, the result of this constructor can be somewhat
unpredictable. This is because floating-point numbers are
represented in computer hardware as base 2 (binary) fractions.
However, most decimal fractions cannot be represented exactly
as binary fractions. Therefore, the binary floating-point numbers
actually stored in the machine only approximate the decimal
floating-point numbers you enter. Hence, the value passed to the
double constructor is not exactly equal to 0.1.

In contrast, the String constructor is perfectly predictable and
produces a  that is exactly equal to 0.1, as
expected.

Now the console output is this:

Therefore, you should use the String constructor in preference to
the double constructor.

If, for any reason, a double must be used to create a 
, consider using the static 

 method. This will give the
same result as converting the double to a String using the 

 method and then using the 
 constructor.

Pitfall #2: The static valueOf(double) method

If you are using the static 
method to create a , be aware of its limited
precision.

The code above produces this console output:

x=0.10000000000000000555111512312578270211815

BigDecimalBigDecimal

BigDecimal y = new BigDecimal("0.1");BigDecimal y = new BigDecimal("0.1");  
System.out.println("y=" + y);System.out.println("y=" + y);

y=0.1

BigDecimalBigDecimal

BigDecimal.valueOf(double)BigDecimal.valueOf(double)

Double.toString(double)Double.toString(double)

BigDecimal(String)BigDecimal(String)

BigDecimal.valueOf(double)BigDecimal.valueOf(double)

BigDecimalBigDecimal

BigDecimal x = BigDecimal.valueOf(1.012345678BigDecimal x = BigDecimal.valueOf(1.012345678
BigDecimal y = new BigDecimal("1.012345678901BigDecimal y = new BigDecimal("1.012345678901
System.out.println("x=" + x);System.out.println("x=" + x);  
System.out.println("y=" + y);System.out.println("y=" + y);

x=1.0123456789012346 
y=1.01234567890123456789



Here, the  value has lost four decimal digits because a double
has a precision of only 15–17 digits (a float has a precision of
only 6–9 digits), while a  is of arbitrary precision
(limited only by memory).

Therefore, it is actually a good idea to use the String constructor,
since two major problems caused by the double constructor are
effectively avoided.

Pitfall #3: The equals(bigDecimal) method

Let’s take a look at this example:

The console output is the following:

This output is due to the fact that a  consists of an
unscaled integer value with arbitrary precision and a 32-bit
integer scale, both of which must be equal to the corresponding
values of the other  that’s being compared. In this
case

Hence,  is not equal to .

For this reason, two instances of  shouldn’t be
compared using the  method, but instead the 

 method should be used, because it compares
the numerical values (  = 1;  = 1.0) represented by the two
instances of . Here’s an example:

Now the console output is this:

Pitfall #4: The round(mathContext) method

xx

BigDecimalBigDecimal

BigDecimal x = new BigDecimal("1");BigDecimal x = new BigDecimal("1");  
BigDecimal y = new BigDecimal("1.0");BigDecimal y = new BigDecimal("1.0");  
System.out.println(x.equals(y));System.out.println(x.equals(y));

False

BigDecimalBigDecimal

BigDecimalBigDecimal

 has an unscaled value of 1 and a scale of 0.xx

 has an unscaled value of 10 and a scale of 1.yy

xx yy

BigDecimalBigDecimal

equals()equals()

compareTo()compareTo()

xx yy

BigDecimalBigDecimal

System.out.println(x.compareTo(y) == 0);System.out.println(x.compareTo(y) == 0);

True



Some developers might be tempted to use the 

method to round a  to (let’s say) two decimal
places. That’s not a good idea.

The code above produces the following console output, so  is
not the expected value of 12345.68 and the scale is not the
expected value of 2:

The method doesn’t round the fractional part, but it does round
the unscaled value to the given number of significant digits
(counting from left to right), leaving the decimal point untouched,
which results, in the example above, of a negative scale of -3.

So, what happened here?

The unscaled value (123456789) was rounded to two significant
digits (12), which represents a precision of 2. However, because
the decimal point was left untouched, the real value represented
by this  is 12000.0000. This can also be written as
12000 since the four zeros to the right of the decimal point are
meaningless.

But what about the scale? Why is it -3 and not 0, as you would
expect for a value of 12000?

That’s because the unscaled value of this  is 12
and, thus, it has to be multiplied by 1000, which is 10 to the
power of 3, and (12 x 103) equals 12000.

Hence, a positive scale represents the number of fraction digits
(that is, the number of digits to the right of the decimal point),
whereas a negative scale represents the number of insignificant
digits to the left of the decimal point (in this case, the trailing
zeros, since they are only placeholders to indicate the scale of
the number).

Finally, the number represented by a BigDecimal is, therefore,
unscaledValue x 10-scale.

Also note that the code above used the 
method, which doesn’t display the result in scientific notation
(1.2E+4).

To get the expected result of 12345.68, try the 
 method, for example:

round(new MathContext(precision, roundingMode))round(new MathContext(precision, roundingMode))

BigDecimalBigDecimal

BigDecimal x = new BigDecimal("12345.6789");BigDecimal x = new BigDecimal("12345.6789");  
x = x.round(new MathContext(2, RoundingMode.Hx = x.round(new MathContext(2, RoundingMode.H
System.out.println("x=" + x.toPlainString());System.out.println("x=" + x.toPlainString());
System.out.println("scale=" + x.scale());System.out.println("scale=" + x.scale());

xx

x=12000  
scale=-3

BigDecimalBigDecimal

BigDecimalBigDecimal

toPlainString()toPlainString()

setScale(scale, roundingMode)setScale(scale, roundingMode)



Now the console output is what’s expected:

The  method rounds the
fraction part to two decimal places according to the specified
rounding mode.

By the way, you could use the 

method for conventional rounding. But that would require you to
know the total number of digits to the left of the decimal point of
the calculation result. Consider the following example:

Now the console output is the following:

To round  to two decimal places, you would have to use a 
 object with a precision of 11, for example:

The code above produces this console output:

The total number of digits to the left of the decimal point can be
calculated like this:

where

BigDecimal x = new BigDecimal("12345.6789");BigDecimal x = new BigDecimal("12345.6789");  
x = x.setScale(2, RoundingMode.HALF_UP);x = x.setScale(2, RoundingMode.HALF_UP);  
System.out.println("x=" + x));System.out.println("x=" + x));

x=12345.68

setScale(scale, roundingMode)setScale(scale, roundingMode)

round(new MathContext(precision, roundingMode))round(new MathContext(precision, roundingMode))

BigDecimal a = new BigDecimal("12345.12345");BigDecimal a = new BigDecimal("12345.12345");
BigDecimal b = new BigDecimal("23456.23456");BigDecimal b = new BigDecimal("23456.23456");
BigDecimal c = a.multiply(b);BigDecimal c = a.multiply(b);  
System.out.println("c=" + c);System.out.println("c=" + c);

c=289570111.3153564320

cc

MathContextMathContext

BigDecimal d = c.round(new MathContext(11, RoBigDecimal d = c.round(new MathContext(11, Ro
System.out.println("d=" + d);System.out.println("d=" + d);

d=289570111.32

bigDecimal.precision() - bigDecimal.scale() +bigDecimal.precision() - bigDecimal.scale() +

 is the precision of the
unrounded result.

bigDecimal.precision()bigDecimal.precision()



So, this code

produces this console output

However, if you compare this expression

to the following expression

it’s obvious which one you would choose to ensure readable and
concise code.

A new class extending BigDecimal

So far, I’ve shown the most common pitfalls of the 
class and how they can be avoided. But wouldn’t it be better to
have a class that could handle most of these issues so you don’t
risk falling into one of those traps? Well, that’s possible by
extending the  class.

I’m going to show you one way this can be achieved.

First, I need a name for the new class; I’m going use “Decimal.”
The  class is going to extend  and, thus, it
inherits all public fields and methods from its superclass.

However, to call your own methods on an instance of the new
class, you need to override every method of the 
class that returns a  instance, so it returns a 

 instance instead. Because there are quite a few
methods, I’m going to generate delegate methods with the help
of my IDE and then change the code so it returns the correct
type.

For instance, this code

 is the scale of the unrounded
result.

bigDecimal.scale()bigDecimal.scale()

 is the scale you want to round to.newScalenewScale

BigDecimal e = c.round(new MathContext(c.precBigDecimal e = c.round(new MathContext(c.prec

e=289570111.32

c.round(new MathContext(c.precision() - c.scac.round(new MathContext(c.precision() - c.sca

c.setScale(2, RoundingMode.HALF_UP);c.setScale(2, RoundingMode.HALF_UP);

BigDecimalBigDecimal

BigDecimalBigDecimal

DecimalDecimal BigDecimalBigDecimal

BigDecimalBigDecimal

BigDecimalBigDecimal

DecimalDecimal



becomes the following

Note that besides the new  instance created by the
 method, I am also creating a new instance of the 

 class here. But since  is immutable, I
would prefer the new class to be immutable too.

You could also imagine a mutable  class, which would
avoid the creation of a second object. In that case, you have to
be aware that mutability changes the behavior of the new class,
which in turn can lead to other pitfalls.

So, the method  will now return a  instance
instead of a  instance.

On object , I am now able to call my own methods, which do
not exist yet. But before creating some new methods, I want to
add some constructors to the newly created  class.

Since constructors cannot be inherited in Java, because the
constructor of the subclass has to have a different name than
the constructor of the superclass (because the name of the
constructor has to be the name of the class), I have to
implement the constructors with the same arguments as those in
the superclass.

Below, I’m going to add only those constructors that make sense
from a business logic perspective and that will avoid most of the
issues discussed above.

@Override@Override  
public BigDecimal add(BigDecimal augend) {public BigDecimal add(BigDecimal augend) {  
    return super.add(augend);    return super.add(augend);  
}}

@Override@Override  
public Decimal add(BigDecimal augend) {public Decimal add(BigDecimal augend) {  
    return new Decimal(super.add(augend));    return new Decimal(super.add(augend));  
}}

BigDecimalBigDecimal

super.add()super.add()

DecimalDecimal BigDecimalBigDecimal

DecimalDecimal

a.add(b)a.add(b) DecimalDecimal

BigDecimalBigDecimal

Decimal a = new Decimal("12345.12345");Decimal a = new Decimal("12345.12345");  
Decimal b = new Decimal("23456.23456");Decimal b = new Decimal("23456.23456");  
Decimal c = a.add(b);Decimal c = a.add(b);

cc

DecimalDecimal

Here’s a constructor to create a  instance from an
int:

 DecimalDecimal

public Decimal(int val) {public Decimal(int val) {  
   super(val);   super(val);  
}}



A constructor with the same argument exists in the
superclass, which is also called in the body of the above
constructor.

Here’s a constructor to create a  instance from a
long:

A constructor with the same argument exists in the
superclass, which is also called in the body of the above
constructor.

 DecimalDecimal

public Decimal(long val) {public Decimal(long val) {  
   super(val);   super(val);  
}}

Here’s a constructor to create a  instance from a
double:

A constructor with the same argument exists in the
superclass but is not called in the body of the above
constructor. Instead, the String constructor is called after
the double has been converted to a string to avoid the
issues seen previously in pitfall #1. I will come back to this
constructor later to discuss possible further issues.

 DecimalDecimal

public Decimal(double val) {public Decimal(double val) {  
   super(Double.toString(val));   super(Double.toString(val));  
}}

Here’s a constructor to create a  instance from a 
:

There is no equivalent constructor in the superclass,
because this would not make any sense, except maybe for
cloning a . To clone, you can use the same
constructor as the one called above, which creates a new 

 from an unscaled value and a scale.

 DecimalDecimal
BigDecimalBigDecimal

public Decimal(BigDecimal val) {public Decimal(BigDecimal val) {  
   super(val.unscaledValue(), val.scale()   super(val.unscaledValue(), val.scale()
}}

BigDecimalBigDecimal

BigDecimalBigDecimal

Here’s a constructor to create a  instance from a
string representation of a number:

A constructor with the same argument exists in the
superclass, which is also called in the body of the above
constructor.

 DecimalDecimal

public Decimal(String val) {public Decimal(String val) {  
   super(val);   super(val);  
}}

Finally, here’s a constructor to create a  instance
from a formatted string representation of a number:

 DecimalDecimal



Double constructors

I’m aware that the new double constructor may lead to issues
due to a double’s limited precision. Nevertheless, I must admit
that I personally prefer the double constructor to the String
constructor, because it feels more natural to write numbers as
what they are, namely as numbers and not as strings. It is also
less error-prone because the numbers you enter are recognized
as numbers by the compiler.

I’ll give you an example for this: Most countries in Europe use a
comma instead of a period as a decimal separator, which could
lead to the following error at runtime:

Another example error might be using nonnumeric characters
due to typos with the String constructor:

These issues can be avoided when you use the double
constructor, because your IDE precompiles the code while
saving it and, thus, it immediately gives feedback on the code’s
syntactic correctness.

Although the piece of code ,
which is syntactically correct, will lead to an exception only at
runtime, the code , which is
syntactically wrong, produces an error at compile time and, thus,
it can be corrected immediately.

Another argument in favor of the double constructor is that you
can use the thousands separator to increase the readability of
the numbers in your code, which is not possible with the String
constructor, for example:

There is no equivalent constructor in the superclass, since
the  class does not handle any formatting
issues.

public Decimal(String val, FormatInfo infpublic Decimal(String val, FormatInfo inf
   super(getFormatInstance(info).parse(va   super(getFormatInstance(info).parse(va
}}

BigDecimalBigDecimal

new Decimal("1000,45") -> java.lang.NumberFor

new Decimal("100o.45") -> java.lang.NumberFor

new BigDecimal("1000,45")new BigDecimal("1000,45")

new BigDecimal(1000,45)new BigDecimal(1000,45)

new Decimal(1_000_000.45) // -> works finenew Decimal(1_000_000.45) // -> works fine  
new Decimal("1_000_000.45") // -> java.lang.Nnew Decimal("1_000_000.45") // -> java.lang.N



And the following won’t work either because the regular
thousands separator is not recognized as such by the String
constructor:

To handle a possible loss of precision, you can check the
resulting precision of the newly created  and throw an
exception if it is greater than 14 (which doesn’t mean that it has
already lost precision, but it possibly could have).

Note that the above constructor should help to avoid pitfall #1
and also pitfall #2 in the sense that an 

 is thrown in case there’s a
possible loss of precision, which then would at least not happen
but go unnoticed.

However, if you still think the use of the double constructor is too
risky, just omit it and use the String constructor instead. That
way, you are sure to avoid both pitfalls #1 and #2.

Adding new methods

Now that I have added constructors, I’m going to add some new
methods to make it easier to compare two decimal numbers.
The recommended way to compare two instances of 

 is to use the  method, for example:

But frankly, this way of comparing numbers is neither obvious
nor very readable, and it could potentially lead to
misinterpretation. That’s why I’d like to introduce the following
five new methods for comparing decimal numbers in a clearer
and more concise way:

new Decimal("1,000,000.45") // -> java.lang.Nnew Decimal("1,000,000.45") // -> java.lang.N

DecimalDecimal

public Decimal(double val) {public Decimal(double val) {  
   super(Double.toString(val));   super(Double.toString(val));  
   if (precision() > 14) {   if (precision() > 14) {  
       throw new IllegalArgumentException("Po       throw new IllegalArgumentException("Po
   }   }  
}}

IllegalArgumentExceptionIllegalArgumentException

BigDecimalBigDecimal compareTo()compareTo()

Decimal a = new Decimal(12345.12345);Decimal a = new Decimal(12345.12345);  
Decimal b = new Decimal(23456.23456);Decimal b = new Decimal(23456.23456);  
a.compareTo(b) == 0 // falsea.compareTo(b) == 0 // false  
a.compareTo(b) >= 0 // falsea.compareTo(b) >= 0 // false  
a.compareTo(b) <= 0 // truea.compareTo(b) <= 0 // true  
a.compareTo(b) > 0  // falsea.compareTo(b) > 0  // false  
a.compareTo(b) < 0  // truea.compareTo(b) < 0  // true

•  a.equalTo(b)•  a.equalTo(b)  
•  a.greaterOrEqualTo(b)•  a.greaterOrEqualTo(b)  



I believe that anyone reading code that uses these new methods
will immediately understand the methods correctly. Note that the 

 method should help to avoid pitfall #3.

In the implementation of the five new methods, I would of course
use the  method, for example:

Handling rounding issues

Now, let’s address the rounding issues of the  class
by adding the following new method:

This method uses an interface, which is implemented by an
enum to specify a scale and a rounding mode. The interface lets
you create your own  enum with rounding types
according to your needs.

•  a.lessOrEqualTo(b)•  a.lessOrEqualTo(b)  
•  a.greaterThan(b)•  a.greaterThan(b)  
•  a.lessThan(b)•  a.lessThan(b)

equalTo()equalTo()

compareTo()compareTo()

public boolean equalTo(Decimal decimal) {public boolean equalTo(Decimal decimal) {  
    return this.compareTo(decimal) == 0;    return this.compareTo(decimal) == 0;  
}}  
public boolean greaterOrEqualTo(Decimal decimpublic boolean greaterOrEqualTo(Decimal decim
    return this.compareTo(decimal) >= 0;    return this.compareTo(decimal) >= 0;  
}}  
public boolean lessOrEqualTo(Decimal decimal)public boolean lessOrEqualTo(Decimal decimal)
    return this.compareTo(decimal) <= 0;    return this.compareTo(decimal) <= 0;  
}}  
public boolean greaterThan(Decimal decimal) {public boolean greaterThan(Decimal decimal) {
    return this.compareTo(decimal) > 0;    return this.compareTo(decimal) > 0;  
}}  
public boolean lessThan(Decimal decimal) {public boolean lessThan(Decimal decimal) {  
    return this.compareTo(decimal) < 0;    return this.compareTo(decimal) < 0;  
}}

BigDecimalBigDecimal

public Decimal rounding(RoundingInfo info) {public Decimal rounding(RoundingInfo info) {  
    return setScale(info.scale(), info.mode()    return setScale(info.scale(), info.mode()
}}

RoundingRounding

public interface RoundingInfo {public interface RoundingInfo {  
  
    int scale();    int scale();  
    RoundingMode mode();    RoundingMode mode();  
  
}}  
  
public enum Rounding implements RoundingInfo public enum Rounding implements RoundingInfo 
  
    AMOUNT(2, RoundingMode.HALF_UP),    AMOUNT(2, RoundingMode.HALF_UP),  
    RATE(6, RoundingMode.HALF_UP),    RATE(6, RoundingMode.HALF_UP),  
    SURFACE(4, RoundingMode.HALF_UP);    SURFACE(4, RoundingMode.HALF_UP);  
  



This capability allows you to specify preset rounding settings, the
ones you use in your daily work. That way, you do not have to
specify either the scale or the rounding mode yourself.
(Developers who are not familiar with the different rounding
modes, or who ignore the one currently in use, could easily
choose the wrong one.) You could even completely ignore the
scale and rounding modes as long as you know what type of
number you are dealing with (currency, rate, and so on).

The code above produces the following console output:

Note that the new rounding method should help to avoid pitfall
#4.

Finally, let’s add a method to format the . Why should a
class not be able to render itself in an appropriate way? Here’s
the method to format a Decimal according to the specified format
information:

    private final int scale;    private final int scale;  
  
    private final RoundingMode mode;    private final RoundingMode mode;  
  
    private Rounding(int scale, RoundingMode     private Rounding(int scale, RoundingMode 
        this.scale = scale;        this.scale = scale;  
        this.mode = mode;        this.mode = mode;  
    }    }  
  
    @Override    @Override  
    public int scale() {    public int scale() {  
        return scale;        return scale;  
    }    }  
  
    @Override    @Override  
    public RoundingMode mode() {    public RoundingMode mode() {  
        return mode;        return mode;  
    }    }  
  
}}

Decimal a = new Decimal(12345.12345);Decimal a = new Decimal(12345.12345);  
Decimal b = new Decimal(23456.23456);Decimal b = new Decimal(23456.23456);  
Decimal c = a.multiply(b).round(Rounding.AMOUDecimal c = a.multiply(b).round(Rounding.AMOU
System.out.println("c=" + c);System.out.println("c=" + c);

c=289570111.32

DecimalDecimal

public String format(FormatInfo info) {public String format(FormatInfo info) {  
    return getFormatInstance(info).format(thi    return getFormatInstance(info).format(thi
}}  
  
private static DecimalFormat getFormatInstancprivate static DecimalFormat getFormatInstanc
    DecimalFormat format = (DecimalFormat) De    DecimalFormat format = (DecimalFormat) De
    format.applyPattern(info.pattern());    format.applyPattern(info.pattern());  
    return format;    return format;  
}}



In the same way as for rounding, the following method uses an
interface that is implemented by an enum to specify a pattern
and a locale:

Doing that allows you again to specify preset formats, matching
the previously defined rounding settings. In this case, you also
do not have to deal with the correct pattern and locale used for
the formatting, which in turn leads to less error-prone code. For
example, this code

produces this console output

A real-world example

public interface FormatInfo {public interface FormatInfo {  
  
    String pattern();    String pattern();  
  
    Locale locale();    Locale locale();  
  
}}  
public enum Format implements FormatInfo {public enum Format implements FormatInfo {  
  
    AMOUNT("#,##0.00", Locale. US),    AMOUNT("#,##0.00", Locale. US),  
    RATE("#,##0.000000", Locale. US),    RATE("#,##0.000000", Locale. US),  
    SURFACE("#,##0.0000", Locale. US);    SURFACE("#,##0.0000", Locale. US);  
  
    private final String pattern;    private final String pattern;  
  
    private final Locale locale;    private final Locale locale;  
  
    private Format(String pattern, Locale loc    private Format(String pattern, Locale loc
        this.pattern = pattern;        this.pattern = pattern;  
        this.locale = locale;        this.locale = locale;  
    }    }  
  
    @Override    @Override  
    public String pattern() {    public String pattern() {  
        return pattern;        return pattern;  
    }    }  
  
    @Override    @Override  
    public Locale locale() {    public Locale locale() {  
        return locale;        return locale;  
    }    }  
  
}}

Decimal a = new Decimal(12345.12345);Decimal a = new Decimal(12345.12345);  
Decimal b = new Decimal(23456.23456);Decimal b = new Decimal(23456.23456);  
Decimal c = a.multiply(b).round(Rounding.AMOUDecimal c = a.multiply(b).round(Rounding.AMOU
System.out.println("c=" + c.format(Format.AMOSystem.out.println("c=" + c.format(Format.AMO

c=289,570,111.32



Now that you are able to address the four pitfalls discussed
above and also do some basic formatting operations on the new
class, let’s see how this all works together in a real-world
example.

First, here’s an example that calculates compound interest:

The code above produces the following console output:

The following is the same example using the regular BigDecimal
API:

The code above produces the following console output:

You can decide which of these two versions is more readable,
more concise, and less error-prone.

Decimal principal = new Decimal(12_345.67);Decimal principal = new Decimal(12_345.67);  
Decimal rate = new Decimal(0.0456);Decimal rate = new Decimal(0.0456);  
int compounds = 12;int compounds = 12;  
int years = 7;int years = 7;  
  
Decimal amount = principal.multiply(Decimal amount = principal.multiply(  
        Decimal.ONE.add(        Decimal.ONE.add(  
                rate.divide(new Decimal(compo                rate.divide(new Decimal(compo
        ).pow(compounds * years)        ).pow(compounds * years)  
).rounding(Rounding.AMOUNT);).rounding(Rounding.AMOUNT);  
  
assertTrue(amount.equalTo(new Decimal(16_977.assertTrue(amount.equalTo(new Decimal(16_977.
  
System.out.println("amount=" + amount.format(System.out.println("amount=" + amount.format(

amount=16,977.70

BigDecimal principal = new BigDecimal("12345.BigDecimal principal = new BigDecimal("12345.
BigDecimal rate = new BigDecimal("0.0456");BigDecimal rate = new BigDecimal("0.0456");  
int compounds = 12;int compounds = 12;  
int years = 7;int years = 7;  
  
BigDecimal amount = principal.multiply(BigDecimal amount = principal.multiply(  
        BigDecimal.ONE.add(        BigDecimal.ONE.add(  
                rate.divide(new BigDecimal(co                rate.divide(new BigDecimal(co
        ).pow(compounds * years)        ).pow(compounds * years)  
).setScale(2, RoundingMode.HALF_UP);).setScale(2, RoundingMode.HALF_UP);  
  
assertTrue(amount.compareTo(new BigDecimal("1assertTrue(amount.compareTo(new BigDecimal("1
  
DecimalFormat formatter = (DecimalFormat) DecDecimalFormat formatter = (DecimalFormat) Dec
formatter.applyPattern("#,##0.00");formatter.applyPattern("#,##0.00");  
  
System.out.println("amount=" + formatter.formSystem.out.println("amount=" + formatter.form

amount=16,977.70



Frank Kiwy
Frank Kiwy is a senior software developer
and project leader who works for a
government IT center in Europe. His focus
is on Java SE, Java EE, and web
technologies. Kiwy is also interested in
software architecture and is committed to
continuous integration and delivery. He is
currently involved in implementing the
European Union¿s Common Agricultural
Policy, where he's in charge of several
projects. When programming, he values
well-designed software with clear and easy-
to-understand APIs.

Share this Page

   

Conclusion

You have seen the most common pitfalls of the 
class and learned how to avoid them using either the regular
BigDecimal API or a custom  class that extends 

.

When it is used correctly, the  class is well suited
for any calculations where decimal values need to remain exact,
especially when you are dealing with currencies. Thus, it meets
most of the core requirements for business logic developers.

Dig deeper

BigDecimalBigDecimal

DecimalDecimal

BigDecimalBigDecimal

BigDecimalBigDecimal

“Is it time for operator overloading in Java?”

“Jakarta EE: Building microservices with Java EE’s
successor”



Class BigDecimal

Uses of Class java.math.BigDecimal

How BigDecimal extends Number

“Records come to Java”


Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

https://blogs.oracle.com/javamagazine/frank-kiwy
https://blogs.oracle.com/javamagazine/frank-kiwy
http://www.oracle.com/
https://blogs.oracle.com/javamagazine/is-it-time-for-overloading-in-java
https://blogs.oracle.com/javamagazine/jakarta-ee-building-microservices-with-java-ees-successor
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/javase/8/docs/api/java/math/class-use/BigDecimal.html
https://docs.oracle.com/cd/E13222_01/wls/docs45/classdocs/java.math.BigDecimal.html
https://blogs.oracle.com/javamagazine/records-come-to-java
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/


© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

