
CODING

First steps with Oracle Cloud
Infrastructure SDK for Java
Learn how to control Oracle Cloud
Infrastructure resources through Java
code.

by Michał Jakóbczyk

April 9, 2021

The cloud often blurs traditional distinctions between
infrastructure operations and application development. It is
becoming more and more prevalent that developers work not
only on application code but also treat cloud infrastructure
resources as programmable artifacts. Every major cloud
provider, including Oracle Cloud Infrastructure (OCI), offers a set
of secure web interfaces to control the lifecycle of cloud
resources. These APIs are your gateway to the cloud control
plane, which is responsible for cloud resource lifecycle
management.

As developers, we are mostly interested in designing and
running our workloads. Automation is what allows you to fully
leverage one of the cloud’s key characteristics, namely the rapid
self-provisioning of pooled cloud resources. The ability to quickly
launch and delete cloud resources such as compute instances,
managed Kubernetes clusters, serverless functions, or various
data stores, empowers developers to prototype, build
applications, and roll out systems faster and in a more efficient
way.

How does automation actually work in practice? In this article,
you will look closely at the cloud control plane API for OCI.

OCI REST API

Representational State Transfer (REST) architectural style is the
most common way for cloud providers to offer their cloud control
plane interfaces. Based on that, cloud resources are
represented by REST resources. Their lifecycle events can be

First steps with Oracle Cloud
Infrastructure SDK for Java

OCI REST API

Securing API calls

OCI SDK for Java

Getting the OCI SDK

Identity of an SDK-based
application

Authentication details for IAM
users

Implementing the Claim Check
integration pattern

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/coding-2
https://www.oracle.com/cloud/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

easily mapped to HTTP methods (, , , and
).

Different groups of OCI services use different REST API
endpoints depending on the service type and OCI region. For
example, to manage data science services in Montreal, you will
rely on the

API endpoint. The management of the MySQL Database service
in Dubai will require you to use the

 API
endpoint. (Those URLs won’t do anything useful if you click on
them in a browser.)

Let me guide you through an example.

To create a new Oracle virtual cloud network (VCN), the
 API is used. The API belongs to the Core Services

API. Assuming you want to create this cloud resource in the
Zurich region, the following base API endpoint is used:

To call the API, your application sends a
request to the endpoint. The request payload
is formatted as JSON and contains a single element of the

 data type. This data type defines the fields
(, , and so on) required to properly
initialize the newly created VCN. You can see a sample HTTP
request in the following code snippet:

The APIs are intended to deliver the richest set of operations
performed on cloud resources. If there is no API resource for a
particular operation, such an operation is either not supported at
the moment or can be achieved through a sequence of other API
calls.

How secure is remote management of cloud resources over
these cloud control plane interfaces? Very.

Securing API calls

Communication with a cloud control plane interface is secured
during transit by Transport Layer Security (TLS), which provides
privacy and integrity for all requests and responses from the OCI

GETGET PUTPUT POSTPOST DELETEDELETE

https://datascience.ca-montreal-https://datascience.ca-montreal-

1.oci.oraclecloud.com1.oci.oraclecloud.com

https://mysql.me-dubai-1.ocp.oraclecloud.comhttps://mysql.me-dubai-1.ocp.oraclecloud.com

CreateVcnCreateVcn

https://iaas.eu-zurich-1.oraclecloud.comhttps://iaas.eu-zurich-1.oraclecloud.com

CreateVcnCreateVcn POSTPOST

/20160918/vcns/20160918/vcns

CreateVcnDetailsCreateVcnDetails

"cidrBlock""cidrBlock" "dnsLabel""dnsLabel"

POST /20160918/vcnsPOST /20160918/vcns
Host: iaas.eu-zurich-1.oraclecloud.com Host: iaas.eu-zurich-1.oraclecloud.com
<authorization and other headers><authorization and other headers>
{{
 "cidrBlock" : "192.168.1.0/24", "cidrBlock" : "192.168.1.0/24",
 "compartmentId" : "ocid1.compartment.oc1..< "compartmentId" : "ocid1.compartment.oc1..<
 "displayName" : "sdk-demo-vcn", "displayName" : "sdk-demo-vcn",
 "dnsLabel": "sdkdemo" "dnsLabel": "sdkdemo"
}}

https://www.oracle.com/cloud/networking/virtual-cloud-network/
https://docs.oracle.com/en-us/iaas/Content/Identity/Reference/corepolicyreference.htm

REST API. From a practical point of view, it means your
application will interact with HTTPS endpoints only. Unencrypted
HTTP traffic is impossible in nearly all cases.

The cloud control plane authenticates and authorizes each
request by looking at the request signature that is supposed to
be delivered as a part of the header. As a
result, your application must be able to create this request
signature to successfully interact with the OCI REST API. To
generate the signature, you need to build a signing string, which
is composed of parts of the request including, but not limited to,
a resource target (such as) and a hash of the
request payload (when present).

To form the signature, the signing string is first encrypted
according to the RSA-SHA256 algorithm and then encoded with
the BASE64 algorithm. Inside the request’s
header, together with the request signature (

), you include a tenancy identifier (
), a user identifier (), and a

fingerprint () of the public key that
corresponds to the private key applied during encryption of the
signing string. The public key must be uploaded and assigned to
the user in OCI before you send the request. This key is the API
signing key.

Thanks to the request signature, the cloud control plane knows
all the pieces required to authenticate, and then authorize, every
request.

The good news is that as a Java developer, you do not need to
code the request signature creation logic on your own because
you can rely on the OCI Software Development Kit (SDK) for
Java.

OCI SDK for Java

The OCI SDK for Java is a set of libraries that allows your
programs to interact with the OCI REST API in a convenient and
efficient way. It provides a broad range of Java classes that are
used to make OCI REST API calls and process their results.
Additionally, every time the SDK is about to send a request, it
also takes the burden of creating a request signature. In this
way, you can keep your code simpler.

Look at the following code snippet, which creates the same
sample HTTP request shown earlier:

AuthorizationAuthorization

/20160918/vcns/20160918/vcns

AuthorizationAuthorization

{request-signature}{request-signature}

{tenancy-ocid}{tenancy-ocid} {user-ocid}{user-ocid}

{key-fingerprint}{key-fingerprint}

Authorization: Signature version="1", Authorization: Signature version="1",
keyId="{tenancy-ocid}/{user-ocid}/{key-fingerkeyId="{tenancy-ocid}/{user-ocid}/{key-finger
algorithm="rsa-sha256", ..., algorithm="rsa-sha256", ...,
signature="{request-signature}"signature="{request-signature}"

https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/javasdk.htm#SDK_for_Java

First, the code creates a new object
using a nested builder class. The builder class’s
method requires, as a parameter, an object providing the
information used to authenticate requests. More on this object is
discussed just a bit later.

Second, the code prepares a plain old Java object (POJO) that
will be eventually serialized into the payload of an API request.
In this case, the application will call the API. Based
on that, the code creates a new object
and populates its fields accordingly.

The class is generated from the
corresponding OCI API data type definition. This definition may
be useful to choose proper field values.

Third, it creates a new object, providing its
dedicated builder class with the reference to the

 object.

Finally, the method calls the OCI API.

Figure 1 shows the resulting, newly created VCN cloud resource
as seen in the OCI Console.

Figure 1. The VCN cloud resources shown in the OCI Console

At this stage, you may be asking yourself two fundamental
questions:

Getting the OCI SDK

// ... authentication-related code// ... authentication-related code
// Creating a client instance to interact wit// Creating a client instance to interact wit
VirtualNetworkClient vnClient = VirtualNetwoVirtualNetworkClient vnClient = VirtualNetwo
// Creating CreateVcnDetails payload object// Creating CreateVcnDetails payload object
CreateVcnDetails details = CreateVcnDetails.bCreateVcnDetails details = CreateVcnDetails.b
 .cidrBlock("192.168.1.0/24") .cidrBlock("192.168.1.0/24")
 .compartmentId(compartmentId) .compartmentId(compartmentId)
 .displayName("sdk-demo-vcn") .displayName("sdk-demo-vcn")
 .dnsLabel("sdkdemo") .dnsLabel("sdkdemo")
 .build(); .build();
// Preparing the request object// Preparing the request object
CreateVcnRequest request = CreateVcnRequest.bCreateVcnRequest request = CreateVcnRequest.b
// Calling the CreateVcn REST API// Calling the CreateVcn REST API
CreateVcnResponse response = vnClient.createVCreateVcnResponse response = vnClient.createV
// Print the OCID of the newly created VCN// Print the OCID of the newly created VCN
if(response.get__httpStatusCode__()==200) if(response.get__httpStatusCode__()==200)
 System.out.println(response.getVcn(). System.out.println(response.getVcn().

VirtualNetworkClientVirtualNetworkClient

build()build()

CreateVcnCreateVcn

CreateVcnDetailsCreateVcnDetails

CreateVcnDetailsCreateVcnDetails

CreateVcnRequestCreateVcnRequest

CreateVcnDetailsCreateVcnDetails

createVcncreateVcn

Where do I get the OCI SDK for Java classes?

How do I define the identity of an application in the context
of OCI authentication?



https://docs.oracle.com/en-us/iaas/tools/java/1.31.0/com/oracle/bmc/core/VirtualNetworkClient.html
https://docs.oracle.com/en-us/iaas/tools/java/1.31.0/com/oracle/bmc/core/model/CreateVcnDetails.html
https://docs.oracle.com/en-us/iaas/api/#/en/iaas/20160918/datatypes/CreateVcnDetails
https://docs.oracle.com/en-us/iaas/tools/java/1.31.0/com/oracle/bmc/core/requests/CreateVcnRequest.html
https://docs.oracle.com/en-us/iaas/tools/java/1.31.0/com/oracle/bmc/core/VirtualNetworkClient.html#createVcn-com.oracle.bmc.core.requests.CreateVcnRequest-

The SDK code is maintained on GitHub’s oci-java-sdk
repository, which is also where you can find the latest SDK
releases. In that same place, you can browse through existing
issues or submit new issues, if needed.

In other words, the most manual way to obtain the official SDK
release is to download it from GitHub. The entire file is rather
large (around 358 MB for version 1.31.0) because it contains all
dependencies, sources, and Javadoc files. Figure 2 shows the
contents.

Figure 2. The contents of the oci-java-sdk repository

I believe most developers will rather rely on Maven or Gradle to
automate the build of Java software. The OCI SDK artifacts (as
JAR files) are available in Maven Central under Group ID. You
can find the relevant Maven JAR file using the Maven Central
Repository Search. Figure 3 shows how to search for the

 class (
) in version 1.31.0

(clause v:1.31.0) within the OCI SDK (
).

Figure 3. Searching in the Maven repository

Based on the results, you now know all the information required
to add the right dependency to your file.

VirtualNetworkClientVirtualNetworkClient

clause c:VirtualNetworkClientclause c:VirtualNetworkClient

clause g:com.oracle.oci.sdkclause g:com.oracle.oci.sdk

pom.xmlpom.xml

<dependency><dependency>
 <groupId>com.oracle.oci.sdk</groupId> <groupId>com.oracle.oci.sdk</groupId>
 <artifactId>oci-java-sdk-core</artifact <artifactId>oci-java-sdk-core</artifact
 <version>1.31.0</version> <version>1.31.0</version>
 </dependency> </dependency>

https://github.com/oracle/oci-java-sdk
https://github.com/oracle/oci-java-sdk/releases
https://github.com/oracle/oci-java-sdk/issues
https://search.maven.org/search?q=g:com.oracle.oci.sdk
https://search.maven.org/

You can find the code for a reference implementation in my
repository on GitHub. Before running the code, please read the
corresponding file. Note: You have to be logged in
to your GitHub account to access my repository’s resources,
otherwise you will receive a 404 error.

Now, you need to know where the SDK gets the identity-related
information required to compose the request signature for each
API call.

Identity of an SDK-based application

Your application must have some kind of identity, which will tell
OCI which kind of operations are allowed and on which cloud
resources it may perform those operations. The information
specific to this identity is used to form a complete request
signature. The importance of request signatures was described
earlier.

The builder of each SDK client class requires a reference (here,
) to an object implementing a subinterface of

the interface.

To form the identity, an application can do one of the following:

The privilege to call various OCI APIs is given to IAM groups, not
to individual IDCS or IAM users. IAM users belong to groups.
IDCS users belong to IDCS groups that are mapped to IAM
groups. The OCI APIs that can be successfully called by a
particular user depend on the user’s assignment to one or more
IAM groups.

IAM groups are entitled to perform particular actions over
selected cloud resource types in a given scope, that is, the entire
tenancy or an individual compartment, optionally including its
subcompartments as well. This is achieved through the use of
policy statements.

For example, the following code snippet lists two policy
statements that allow users who belong to the group

 to upload, download, and remove
objects in buckets in the compartment:

README.mdREADME.md

ociAuthProviderociAuthProvider

AbstractAuthenticationDetailsProviderAbstractAuthenticationDetailsProvider

VirtualNetworkClient vnClient = VirtualNetworkClient vnClient =
 VirtualNetworkClient.builder().build(ociAu VirtualNetworkClient.builder().build(ociAu

Act on behalf of the named member of an Oracle Identity
Cloud Service (IDCS) or an Oracle Cloud Infrastructure
Identity and Access Management (IAM) group



Leverage the instance principal mechanism

sandbox-publisherssandbox-publishers

SandboxSandbox

allow group sandbox-publishers to read bucketallow group sandbox-publishers to read bucket
allow group sandbox-publishers to manage objeallow group sandbox-publishers to manage obje

https://github.com/mtjakobczyk/ref-oci-sdk-vcn
https://github.com/mtjakobczyk/ref-oci-sdk-vcn/blob/main/README.md

The instance principals mechanism is both recommended for
and, at the same time, useable only for applications running
inside OCI on a compute instance, in a Kubernetes pod, or as a
serverless function.

Instance principals belong to dynamic groups. Matching rules
decide on the membership of a cloud resource to a dynamic
group. For example, a matching rule can define that all compute
instances that are tagged with a specific tag belong to a
particular dynamic group. As a consequence, the applications
running on these compute instances can successfully call only
the OCI APIs that are allowed for this particular dynamic group.

Using instance principals in Java code is pretty straightforward
and does not require passing any authentication details on your
own.

By the way, this article focuses on IAM users. You can find more
information on instance principals in the OCI documentation
under “Calling services from an instance” or in my book,
Practical Oracle Cloud Infrastructure.

You can also find information about IDCS users and the
mapping of IDCS groups to IAM groups in the OCI
documentation under “Managing Oracle Identity Cloud Service
users and groups in the Oracle Cloud Infrastructure Console.”

Authentication details for IAM users

An application can act on behalf of a named IAM user. OCI will
then let the application use the APIs that are allowed for the IAM
group the user belongs to. As a quick recap, OCI authenticates
each API request by looking at the request signature that is
supposed to be delivered as a part of the
header. To generate request signatures for each request, an
application has to be aware of the following items:

var ociAuthProvider = InstancePrincipalsAuthevar ociAuthProvider = InstancePrincipalsAuthe
VirtualNetworkClient vnClient = VirtualNetwoVirtualNetworkClient vnClient = VirtualNetwo

AuthorizationAuthorization

Tenancy OCID

OCI region identifier

IAM user OCID

API key (previously known as API signing key) in PEM
format



The public key must be uploaded for the OCI IAM
user.



The corresponding private key must be readable to
the application.



The fingerprint of the public key

(Optionally) the passphrase of the private key

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm
https://www.apress.com/gp/book/9781484255056
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/addingidcsusersandgroups.htm#Managing_Oracle_Identity_Cloud_Service_Users_and_Groups_in_the_Oracle_Cloud_Infrastructure_Console

If your user is an IDCS user and not an IAM user, do not worry.
Everything should still work smoothly. Just make sure the IDCS
groups are properly mapped to IAM groups used by policy
statements to grant access to OCI APIs.

One way to provide the authentication details is to do it in the
code.

Alternatively, you can use an external configuration file for your
application. If you have ever used the OCI CLI, you stored the
same authentication details in the file. The
configuration file referenced the private key as well. To create
such a configuration file, access the OCI Console, go to the
relevant page, click the tab, and
click . A wizard will appear, as shown in Figure 4.
Make sure you select the option,
click , and then click the button.

Figure 4. Adding the API key

Next, create the file and paste there the
displayed details, as shown in Figure 5. Do not forget to provide
the right path to the newly downloaded private key.

Supplier<InputStream> privateKeySupplier = neSupplier<InputStream> privateKeySupplier = ne
var ociAuthProvider = SimpleAuthenticationDetvar ociAuthProvider = SimpleAuthenticationDet
 .tenantId(tenancyId) .tenantId(tenancyId)
 .region(Region.EU_FRANKFURT_1) .region(Region.EU_FRANKFURT_1)
 .userId(userId) .userId(userId)
 .privateKeySupplier(privateKeySupplier) .privateKeySupplier(privateKeySupplier)
 .passPhrase(privateKeyPassphrase) // if p .passPhrase(privateKeyPassphrase) // if p
 .fingerprint(apiKeyFingerprint) .fingerprint(apiKeyFingerprint)
 .build(); .build();

.oci/config.oci/config

User detailsUser details API KeysAPI Keys

Add API KeyAdd API Key

Generate API Key PairGenerate API Key Pair

Download Private KeyDownload Private Key AddAdd

$HOME/.oci/config$HOME/.oci/config

Figure 5. Creating the $HOME/.oci/config file

To let your application use the authentication details from the
 profile in the file, write code

like the following:

Implementing the Claim Check integration pattern

As an integration architect, I could not resist the temptation to
implement an integration pattern. So, now you’re going to
implement the Claim Check integration pattern using

Architecture. The goal is to implement a loosely coupled and
event-driven exchange of large files. The idea is sketched in
Figure 6.

Figure 6. The architecture of the file exchange application

DEFAULTDEFAULT $HOME/.oci/config$HOME/.oci/config

var configFile = ConfigFileReader.parseDefaulvar configFile = ConfigFileReader.parseDefaul
var ociAuthProvider = new ConfigFileAuthenticvar ociAuthProvider = new ConfigFileAuthentic

The OCI SDK for Java

OCI Object Storage

OCI Streaming

https://www.enterpriseintegrationpatterns.com/patterns/messaging/StoreInLibrary.html

One application (the producer) uploads a large file to OCI Object
Storage and publishes the object’s metadata (namespace,
bucket name, object name) inside a lightweight binary message
to OCI Streaming. A second application (the consumer) is
periodically retrieving from the stream all newly published
messages.

In this way, the consumer is able to decode the object’s
metadata from the message’s payload and download the large
file from OCI Object Storage. OCI Streaming is used here to
provide event-driven messaging and let the applications
exchange the object’s metadata quickly using lightweight
messages.

The applications are loosely coupled: The producer does not
need to establish any synchronous connection to the consumer.
It simply uploads the large file to the bucket and sends a
message to the stream. This single message can be consumed
by multiple applications, allowing all interested parties to collect
the large file. I’ll call this behavior the publish-subscribe
messaging pattern.

Cloud infrastructure. I will assume now that you are using an
OCI user (IAM/IDCS) that belongs to an IAM group with
administration-level access in some compartment. Please store
the Oracle Cloud Identifier (OCID) of this compartment in the

 variable.

To prepare the required cloud infrastructure, you have to create
a new OCI Streaming stream and a new OCI Object Storage
bucket.

Hint: If you are using Windows, to successfully execute all shell
commands from this article, switch to Windows Subsystem for
Linux (WSL) or launch a Linux-based virtual machine (or
compute instance in the cloud).

Choose some names for these resources and store them as
variables.

Now, execute the following OCI CLI commands:

The OCID of the stream is stored now in the
variable and the OCID of the bucket is stored in the

 variable. OCI Streaming clients need to know the
endpoint of the stream. To obtain the relevant endpoint, execute
one more OCI CLI command.

COMPARTMENT_OCIDCOMPARTMENT_OCID

STREAM_NAME=claim-checksSTREAM_NAME=claim-checks
BUCKET_NAME=large-messagesBUCKET_NAME=large-messages

STREAM_OCID=$(oci streaming admin stream creaSTREAM_OCID=$(oci streaming admin stream crea
BUCKET_OCID=$(oci os bucket create --name $BUBUCKET_OCID=$(oci os bucket create --name $BU

STREAM_OCIDSTREAM_OCID

BUCKET_OCIDBUCKET_OCID

You will need all these variables later as the input parameters to
the sample application.

The sample application. I have implemented a sample
application and published the source on GitHub. You can find
the complete codebase here. Here’s what the application looks
like.

There is a single class called that can act
either as a producer or as a consumer.

As a producer (), the application

As a consumer (), the application polls the OCI
Streaming stream for the incoming messages. For each
message retrieved from the stream, the consumer

The uses the profile in the
default OCI configuration file () to sign
your OCI API requests and, in this way, authenticate them. Make
sure you have this configuration file available to the application
or change the code using one of the alternative authentication
providers. For more information, see earlier sections in this
article.

Consumers. Start two consumers, each in a separate terminal
pane or window, using some of the variables set a few moments

STREAM_ENDPOINT=$(oci streaming admin stream STREAM_ENDPOINT=$(oci streaming admin stream

ref-oci-sdk-claim-checkref-oci-sdk-claim-check
├── LICENSE├── LICENSE
├── README.md├── README.md
├── pom.xml├── pom.xml
└── src└── src
 └── main └── main
 └── java └── java
 └── io └── io
 └── github └── github
 └── mtjakobczyk └── mtjakobczyk
 └── javamagazine └── javamagazine
 └── ClaimCheckCli └── ClaimCheckCli

ClaimCheckClientClaimCheckClient

-producer-producer

Puts (uploads) the file as an object to an OCI Object
Storage bucket



Creates a message that stores the complete path to the
newly created object



Sends the message to an OCI Streaming stream

-consumer-consumer

Decodes the message value (payload) to learn the OCI
Object Storage path to an object



Gets (downloads) the object

Persists the object as a local file

ClaimCheckClientClaimCheckClient DEFAULTDEFAULT

$HOME/.oci/config$HOME/.oci/config

https://github.com/mtjakobczyk/ref-oci-sdk-claim-check

ago.

The first consumer instance () is a member of the
 consumer group and saves the downloaded file locally under

the following path: . The
second consumer instance () is a member of the

 consumer group and persists the downloaded file as
. Running the two consumers

in different consumer groups (and) will effectively allow
both of them to receive the same message.

When the consumers start polling the stream for new messages,
you should see something similar to the following in the output:

Producer. To demonstrate the Claim Check pattern in action,
you’ll need to create a mock of a large file. In this scenario, the
file will have 10 MB and will imitate a PDF file. No, that size is
not a joke! From an application messaging perspective, 10 MB is
considered a rather large size for a payload. Such a file cannot
be processed as a message by OCI Streaming, because it is
larger than 1 MB. This is where the Claim Check pattern comes
into play: The producer uploads the file to the OCI Object
Storage bucket first and subsequently passes the object’s path
as a message over OCI Streaming to the consumers.

You should see something like the following in the output:

java -jar claim-check-client-1.0-jar-with-depjava -jar claim-check-client-1.0-jar-with-dep
java -jar claim-check-client-1.0-jar-with-depjava -jar claim-check-client-1.0-jar-with-dep

receiver-1receiver-1

c1c1

/tmp/receiver-1-large.pdf/tmp/receiver-1-large.pdf

receiver-2receiver-2

c2c2

/tmp/receiver-2-large.pdf/tmp/receiver-2-large.pdf

c1c1 c2c2

Starting ClaimCheckClientStarting ClaimCheckClient
Using DEFAULT profile from the default OCI coUsing DEFAULT profile from the default OCI co
Preparing OCI API clients (for Object StoragePreparing OCI API clients (for Object Storage
Querying for Object Storage namespaceQuerying for Object Storage namespace
Your object storage namespace: yournamespaceYour object storage namespace: yournamespace
ClaimCheckClient acting as consumerClaimCheckClient acting as consumer

Create a mock of a 10MB PDF# Create a mock of a 10MB PDF
head -c $((10*1024*1024)) /dev/urandom > /tmphead -c $((10*1024*1024)) /dev/urandom > /tmp
Run a producer# Run a producer
java -jar claim-check-client-1.0-jar-with-depjava -jar claim-check-client-1.0-jar-with-dep

Starting ClaimCheckClientStarting ClaimCheckClient
Using DEFAULT profile from the default OCI coUsing DEFAULT profile from the default OCI co
Preparing OCI API clients (for Object StoragePreparing OCI API clients (for Object Storage
Querying for Object Storage namespaceQuerying for Object Storage namespace
Your object storage namespace: yournamespaceYour object storage namespace: yournamespace
ClaimCheckClient acting as producerClaimCheckClient acting as producer
Found file: /tmp/large.pdf (10240kB)Found file: /tmp/large.pdf (10240kB)
Uploading the file as /n/yournamespace/b/largUploading the file as /n/yournamespace/b/larg
Successfully uploaded the fileSuccessfully uploaded the file
Successfully published the message to the strSuccessfully published the message to the str

https://docs.oracle.com/en-us/iaas/Content/Streaming/Tasks/using_consumer_groups.htm

Consumers again. In each individual terminal window, where
you started both consumers, you will see new log entries.

Finally, to test whether everything went well, use the good old
 utility to compare all three files.

The files should be identical.

Implementation details. The application is based on a single
class called . This class can act either as a
producer or as a consumer.

A quick look at the Maven file shows that you
compiled the source with Java 15 language features (which also
means you need to have at least Java 15 on your build machine)
and you rely on the following dependencies:

Now, check the Java code. Open the ClaimCheckClient.java file
in another browser tab.

I have chosen the picocli framework to implement a neat CLI
with convenient features such as exclusive argument groups
(different parameters for and modes)
and a single-line program start.

The implements the
 interface. The core application logic is

implemented in the method. Picocli calls this method
after parsing and validating the input parameters.

Look at the behavioral Unified Modeling Language (UML)
sequence diagram in Figure 7.

Consumed message from the stream: /n/jakobczyConsumed message from the stream: /n/jakobczy
Successfully saved file locally as /tmp/receiSuccessfully saved file locally as /tmp/recei
Consumed message from the stream: /n/jakobczyConsumed message from the stream: /n/jakobczy
Successfully saved file locally as /tmp/receiSuccessfully saved file locally as /tmp/recei

diffdiff

diff /tmp/large.pdf /tmp/receiver-1-large.pdfdiff /tmp/large.pdf /tmp/receiver-1-large.pdf
diff /tmp/large.pdf /tmp/receiver-2-large.pdfdiff /tmp/large.pdf /tmp/receiver-2-large.pdf

ClaimCheckClientClaimCheckClient

pom.xmlpom.xml

picoclipicocli

oci-java-sdk-coreoci-java-sdk-core

oci-java-sdk-objectstorageoci-java-sdk-objectstorage

oci-java-sdk-streamingoci-java-sdk-streaming

slf4j-api with slf4j-simpleslf4j-api with slf4j-simple

-consumer-consumer -producer-producer

new CommandLine(new ClaimCheckClient()).execunew CommandLine(new ClaimCheckClient()).execu

ClaimCheckClientClaimCheckClient

Callable<Integer>Callable<Integer>

call()call()

https://github.com/mtjakobczyk/ref-oci-sdk-claim-check/blob/main/src/main/java/io/github/mtjakobczyk/javamagazine/ClaimCheckClient.java
https://picocli.info/

Figure 7. The UML sequence diagram for the ClaimCheck application

The diagram shows the sequence of steps, including calls to
OCI APIs. As shown in the diagram, the core application logic
consists of four stages.

Create authentication details provider instance (
).


ociAuthProviderociAuthProvider

Instantiate the OCI API clients (and
).

 osClientosClient
streamClientstreamClient

Call the OCI Object Storage API to get the OCI Object
Storage namespace ().


osNamespaceosNamespace

Execute consumer or producer logic, depending on the
input parameters.



var configFile = ConfigFileReader.parseDefaulvar configFile = ConfigFileReader.parseDefaul
var ociAuthProvider = new ConfigFileAuthenticvar ociAuthProvider = new ConfigFileAuthentic

var osClient = ObjectStorageClient.builder().var osClient = ObjectStorageClient.builder().
var streamClient = StreamClient.builder().endvar streamClient = StreamClient.builder().end

The method calls the OCI
Object Storage API to get the name of the tenant’s OCI Object
Storage namespace. Each OCI tenant is assigned a unique and
constant OCI Object Storage namespace. Knowing the
namespace name is necessary to upload and download files
using the OCI Object Storage API. A dedicated builder class
takes the OCID of the compartment and builds an instance of
the .

The OCI API call is done by the object
().

The method
returns the result of the OCI API call in a form of a

 object. This object includes an HTTP
status code. You can use the code to find out what really
happened in OCI. If the operation was successful (, in
this case), extract the name of the OCI Object Storage
namespace and return it to the method.

The producer’s logic calls the method to
upload the large file to a bucket in OCI Object Storage. The
method returns a path to the newly uploaded object (for
example,

). Next,
the path is passed to the method,
which sends the path encapsulated in an OCI Streaming
message. Each of the two methods performs a single OCI API
call.

var osNamespace = getObjectStorageNamespace(ovar osNamespace = getObjectStorageNamespace(o

if (clientModeArgs.consumerArgs != null && clif (clientModeArgs.consumerArgs != null && cl
 // CONSUMER MODE LOGIC // CONSUMER MODE LOGIC
}}
if (clientModeArgs.producerArgs != null && clif (clientModeArgs.producerArgs != null && cl
 // PRODUCER MODE LOGIC // PRODUCER MODE LOGIC
}}

getObjectStorageNamespacegetObjectStorageNamespace

GetNamespaceRequestGetNamespaceRequest

ObjectStorageClientObjectStorageClient

osClientosClient

getNamespace(GetNamespaceRequest)getNamespace(GetNamespaceRequest)

GetNamespaceResponseGetNamespaceResponse

HTTP 200HTTP 200

call()call()

private String getObjectStorageNamespace(Objeprivate String getObjectStorageNamespace(Obje
 logger.info("Querying for Object Storage logger.info("Querying for Object Storage
 // Get Object Storage Namespace // Get Object Storage Namespace
 // https://docs.oracle.com/en-us/iaas/api // https://docs.oracle.com/en-us/iaas/api
 var getNamespaceRequest = GetNamespaceReq var getNamespaceRequest = GetNamespaceReq
 .compartmentI .compartmentI
 .build(); .build();
 var getNamespaceResponse = osClient.getNa var getNamespaceResponse = osClient.getNa
 var getNamespaceResponseCode = getNamespa var getNamespaceResponseCode = getNamespa
 if(getNamespaceResponseCode!=200) { if(getNamespaceResponseCode!=200) {
 logger.error("GetNamespace failed - H logger.error("GetNamespace failed - H
 System.exit(1); System.exit(1);
 } }
 var osNamespace = getNamespaceResponse.ge var osNamespace = getNamespaceResponse.ge
 logger.info("Your object storage namespac logger.info("Your object storage namespac
 return osNamespace; return osNamespace;
}}

putObjectToBucketputObjectToBucket

/n/yournamespace/b/large-files/o/large.pdf/n/yournamespace/b/large-files/o/large.pdf

putMessageToStreamputMessageToStream

The consumer’s logic calls the
method, which creates a cursor used to consume the stream.
Inside the method code, notice the cursor type,
effectively polling only for new messages and ignoring those that
are already present in the stream. Next, the logic enters an
infinite loop to poll the OCI Streaming API every few seconds.

In each iteration, the method retrieves up to 10
messages and returns them with the next cursor. For each
message, the code calls the method
to decode the message payload as the path to the object,
download the object from OCI Object Storage, and save it locally
as a file.

Looking closer at the structure of all these methods that use OCI
SDK classes inside, notice that the sequence of steps to call the
OCI API from Java code is the same.

// PRODUCER MODE// PRODUCER MODE
if (clientModeArgs.producerArgs != null && clif (clientModeArgs.producerArgs != null && cl
 var filePath = Paths.get(filePathStr); var filePath = Paths.get(filePathStr);
 if (Files.exists(filePath) && Files.isReg if (Files.exists(filePath) && Files.isReg
 logger.info("Found file: {} ({} kB)", logger.info("Found file: {} ({} kB)",
 var osPathToObject = putObjectToBucke var osPathToObject = putObjectToBucke
 putMessageToStream(streamClient, osPa putMessageToStream(streamClient, osPa
 } else { } else {
 logger.error("{} is not a regular fil logger.error("{} is not a regular fil
 return 1; return 1;
 } }
}}

createConsumerGroupCursorcreateConsumerGroupCursor

Type.LatestType.Latest

getMessagesgetMessages

getObjectSaveAsFilegetObjectSaveAsFile

// CONSUMER MODE// CONSUMER MODE
if (clientModeArgs.consumerArgs != null && clif (clientModeArgs.consumerArgs != null && cl
 String cursor = createConsumerGroupCursor String cursor = createConsumerGroupCursor
 do { do {
 var getMessagesResponse = getMessages var getMessagesResponse = getMessages
 String nextCursor = getMessagesRespon String nextCursor = getMessagesRespon
 List<Message> messages = getMessagesR List<Message> messages = getMessagesR
 for (Message msg : messages) { for (Message msg : messages) {
 String osPathToObject = new Strin String osPathToObject = new Strin
 logger.info("Consumed message fro logger.info("Consumed message fro
 getObjectSaveAsFile(osClient, osP getObjectSaveAsFile(osClient, osP
 } }
 cursor = nextCursor; cursor = nextCursor;
 Thread.sleep(clientModeArgs.consumerA Thread.sleep(clientModeArgs.consumerA
 } while (true); } while (true);
}}

Create a request object (for example, of the
 class) to store OCI API request

parameters.


GetObjectRequestGetObjectRequest

Pass this request object to the relevant method of the OCI
API client class (

).



osClient.getObject(getObjectRequest)osClient.getObject(getObjectRequest)

Check the HTTP status code (
).


getObjectResponse.get__httpStatusCode__()getObjectResponse.get__httpStatusCode__()

Michał Jakóbczyk
Michał Jakóbczyk is a cloud integration
architect based in Europe and the author of
Practical Oracle Cloud Infrastructure:
Infrastructure as a Service, Autonomous
Database, Managed Kubernetes, and
Serverless (Apress, 2020). He consults
with and provides advice to clients on
integration architecture and cloud
infrastructure. He holds a bachelor of
science in engineering in the field of
decision support systems and computer
science from Warsaw University of
Technology.

Conclusion

The OCI SDK is a set of Java libraries that allows your programs
to interact with the OCI REST API in a convenient and efficient
way. The SDK code is maintained on GitHub. OCI SDK artifacts
(or, simply, JAR files) are available in Maven Central under
Group ID .

OCI authenticates each API request by looking at the request
signature that is supposed to be delivered as a part of the

 header. An application can act on behalf of a
named IAM/IDCS user. OCI will then let the application use the
APIs that are allowed for the IAM group the user belongs to.
Alternatively, an application running inside OCI (on a compute
instance, in a Kubernetes pod, or as a serverless function) can
rely on the instance principals mechanism.

In this article, I have guided you in taking first steps for the OCI
SDK for Java, and I described a complete solution that
implements the Claim Check pattern with OCI Object Storage
and OCI Streaming.

Dig deeper

Optionally, extract the data from the response object (
).


getObjectResponse.getInputStream()getObjectResponse.getInputStream()

com.oracle.oci.sdkcom.oracle.oci.sdk

AuthorizationAuthorization

OCI REST APIs

OCI SDK for Java

Core Services API

Getting started with Kubernetes

Hello, Coherence Community Edition, Part 3: Packaging,
deployment, scaling, persistence, and operations with Java



OCI SDK for Java Cloud Shell quick start

https://blogs.oracle.com/javamagazine/micha%C5%82-jak%C3%B3bczyk
https://blogs.oracle.com/javamagazine/micha%C5%82-jak%C3%B3bczyk
https://www.barnesandnoble.com/w/practical-oracle-cloud-infrastructure-michal-jak-bczyk/1133880363
https://github.com/oracle/oci-java-sdk
https://search.maven.org/search?q=g:com.oracle.oci.sdk
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/usingapi.htm
https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/javasdk.htm#SDK_for_Java
https://docs.oracle.com/en-us/iaas/Content/Identity/Reference/corepolicyreference.htm
https://blogs.oracle.com/javamagazine/getting-started-with-kubernetes
https://blogs.oracle.com/javamagazine/hello-coherence-community-edition-part-3-packaging-deployment-scaling-persistence-and-operations-with-java
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/cloudshellquickstart_java.htm#Cloud_Shell_Quick_Start_SDK_for_Java

Share this Page

 

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

