
MICROSERVICES

Fast, flexible data access in
Java using the Helidon
microservices platform
Helidon SE and Helidon MP provide a
very diverse array of methods for
accessing data sources.

by Paul Parkinson

February 12, 2021

Helidon is a collection of Java libraries for writing microservices.
Helidon 2.2.0 is out and provides a very diverse and flexible
array of methods for accessing data. In this article, I’ll provide an
overview of those data-access methods with references to
lower-level material and examples.

First, though, here’s a bit of history.

The techniques and technologies used to access databases are
based on various criteria that take into account the best fit for
data access needs as well as the platform being run. Figure 1 is
a time line of relevant events for Java platforms and data
access.

Figure 1. A time line of Java platforms and data access

Jakarta EE is the current and future home of the Java EE
platform, and Eclipse MicroProfile was created to extend the
enterprise Java environment for developing microservices.
Alongside these standards are frameworks such as Spring Boot,
Helidon, and Micronaut. Figure 2 shows the wide range of
technologies supported by Helidon. You can use these
technologies based on the platform you are running or what you
are most comfortable with for whatever reason.

Fast, flexible data access in
Java using the Helidon
microservices platform

Helidon SE and Helidon MP

Kubernetes deployments

Java EE/Jakarta EE
Persistence API

Micronaut Data

Helidon DB Client

The Neo4j graph database

Coherence Community Edition

Messaging for Oracle
Advanced Queuing

GraalVM Native Image

Integration with sagas and
MicroProfile LRA

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/microservices-2
https://github.com/oracle/helidon/
https://jakarta.ee/
https://projects.eclipse.org/proposals/eclipse-microprofile
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

Figure 2. Helidon supports a wide range of technologies.

Helidon is an open source project funded by Oracle, so it
integrates and aligns with Oracle database technologies and
features extremely well. This includes support for the Oracle
Universal Connection Pool (UCP) for JDBC.

For Oracle Database, UCP provides performance (via
connection pooling and tagging), scalability (via a front end for
Database Resident Connection Pool [DRCP], a shared pool for
multitenant databases, a swim lane for sharded databases, and
sharding data sources), and high availability (via the Transaction
Guard, Application Continuity, and Transparent Application
Continuity features of Oracle Database).

Helidon SE and Helidon MP

There are Java SE and MicroProfile (MP) versions of Helidon.
Helidon SE is designed to be transparent without using contexts
and dependency integration (CDI), reactive programming, and
functional-style programming. Helidon MP is for those familiar
with Java EE; this version uses CDI.

Helidon MP’s CDI integration supports both HikariCP and UCP
JDBC connection pools via the following Maven dependencies:

The following is a sample
 file for a

Helidon microservice that connects to an Oracle Autonomous

<dependency><dependency>
 <groupId>io.helidon.integrations.cdi</gro <groupId>io.helidon.integrations.cdi</gro
 <artifactId>helidon-integrations-cdi-data <artifactId>helidon-integrations-cdi-data
 <scope>runtime</scope> <scope>runtime</scope>
</dependency> </dependency>

<dependency><dependency>
 <groupId>io.helidon.integrations.cdi</gro <groupId>io.helidon.integrations.cdi</gro
 <artifactId>helidon-integrations-cdi-data <artifactId>helidon-integrations-cdi-data
 <scope>runtime</scope> <scope>runtime</scope>
</dependency></dependency>

META-INF/microprofile-config.propertiesMETA-INF/microprofile-config.properties

https://docs.oracle.com/cd/E11882_01/java.112/e12265/intro.htm#BABHFGCA

Transaction Processing database. Note the MicroProfile naming
convention of [objectype].[objectname].[objectproperty]:

If you don’t need data source/UCP-specific APIs, you could use
the more generic ,

 naming convention.

Here’s an example of microservice code where the data source
reference configured above is automatically injected.

These simple steps make data source access simple and
dynamic and a perfect fit for cloud environments.

Kubernetes deployments

Here is a Kubernetes deployment YAML file for a microservice,
which sets the environment variables (with values acquired from
Kubernetes secrets, vault, and so on) that will override the
defaults set in the Helidon configuration:

Java EE/Jakarta EE Persistence API

The Java EE/Jakarta EE Persistence API (JPA), first released in
2009, is still the most widely used API for object-relational
mapping. JPA is used not only in Java EE and Jakarta EE
applications but also in other frameworks such as Spring Boot
and Helidon MP.

oracle.ucp.jdbc.PoolDataSource.orderpdb.URL =oracle.ucp.jdbc.PoolDataSource.orderpdb.URL =
oracle.ucp.jdbc.PoolDataSource.orderpdb.user oracle.ucp.jdbc.PoolDataSource.orderpdb.user
oracle.ucp.jdbc.PoolDataSource.orderpdb.passworacle.ucp.jdbc.PoolDataSource.orderpdb.passw
oracle.ucp.jdbc.PoolDataSource.orderpdb.conneoracle.ucp.jdbc.PoolDataSource.orderpdb.conne
oracle.ucp.jdbc.PoolDataSource.orderpdb.inactoracle.ucp.jdbc.PoolDataSource.orderpdb.inact

javax.sql.DataSourcejavax.sql.DataSource

javax.sql.DataSource.orderpdbjavax.sql.DataSource.orderpdb

@Inject@Inject
@Named("orderpdb")@Named("orderpdb")
PoolDataSource atpOrderPdb;PoolDataSource atpOrderPdb;

containers:containers:
- name: order- name: order
 image: %DOCKER_REGISTRY%/order-helidon:0.1 image: %DOCKER_REGISTRY%/order-helidon:0.1
 imagePullPolicy: Always imagePullPolicy: Always
 env: env:
 - name: oracle.ucp.jdbc.PoolDataSource.orde - name: oracle.ucp.jdbc.PoolDataSource.orde
 value: "ORDERUSER" value: "ORDERUSER"
 - name: oracle.ucp.jdbc.PoolDataSource.orde - name: oracle.ucp.jdbc.PoolDataSource.orde
 valueFrom: valueFrom:
 secretKeyRef: secretKeyRef:
 name: atp-user-cred-orderuser name: atp-user-cred-orderuser
 key: password key: password
 - name: oracle.ucp.jdbc.PoolDataSource.orde - name: oracle.ucp.jdbc.PoolDataSource.orde
value: "jdbc:oracle:thin:@%ORDER_PDB_NAME%_tpvalue: "jdbc:oracle:thin:@%ORDER_PDB_NAME%_tp

https://jakarta.ee/specifications/persistence/

Hibernate and Eclipse are the most popular implementations of
JPA and are both supported by Helidon MP. Therefore, it is
simple to migrate the use of JPA in applications that run JPA
(whether they are from an application server, Spring Boot, or
some other platform) to the lighter-weight Helidon.

More details on Helidon and JPA can be found in “Helidon and
JPA” by Laird Nelson, as well as in “Data persistence with
Helidon and Native Image” by Tomáš Kraus.

Micronaut Data

Micronaut is a JVM-based, full-stack framework for building
modular microservices and serverless applications. The
Micronaut framework was released in late 2018, around the
same time as Helidon, and has been very successful in
providing a smooth transition from Spring Boot to its platform by
providing the ability to do the following:

Helidon has an integration layer that allows the use of Micronaut
features from within a Helidon microservice. These features
include Micronaut singleton injection, Micronaut interceptors,
Micronaut bean validation and, of particular interest to the
current topic, Micronaut Data.

The Micronaut Data database access toolkit precomputes
queries and executes them with a thin runtime. Micronaut Data
provides a general API for translating a query model into a query
at compile time and provides runtime support for JPA/Hibernate
and SQL/JDBC back ends.

Inspired by GORM and Spring Data, Micronaut Data improves
on these two technologies by eliminating the runtime model that
uses reflection, eliminating query translation that uses regular
expressions and pattern matching, and adding type safety. The
use of reflection in GORM and Spring Data for modeling
relationships between entities leads to more memory
consumption.

Because Micronaut Data does not perform query translation at
runtime—it’s all precomputed—the performance gain can be
significant. Micronaut Data JDBC provides nearly 2.5 times the
performance of Spring Data; Micronaut Data JPA provides up to
40% better performance than Spring Data JPA. Also, startup
times are at least 1.5 times faster than that of Spring Boot.

Micronaut Data supports GraalVM native images for both the
JPA and JDBC implementations. The currently supported
databases are H2, PostgreSQL, Oracle Database, MariaDB, and
Microsoft SQL Server.

Integrate Spring components into a Micronaut application

Run Spring applications as Micronaut applications

Expose Micronaut beans to a Spring application

https://medium.com/helidon/helidon-and-jpa-da20492f5395
https://medium.com/@kratz.irc/data-persistence-with-helidon-and-native-image-e5a74897ec6d
https://micronaut.io/
https://micronaut.io/blog/2019-07-18-unleashing-predator-precomputed-data-repositories.html

Some considerations for the use of direct Micronaut Data JDBC
compared to JPA, aside from the performance and memory
efficiencies mentioned, include the fact that JDBC has fewer
dialects than JPA, is optimized for reads instead of writes (the
opposite of JPA), and is better for startup times and, thus,
serverless applications.

By integrating with Micronaut in this way, Helidon also inherits
the simplicity of porting Spring Boot applications to Helidon.
Tomas Langer has written a detailed article on this subject:
“Helidon with Micronaut Data repositories.”

Helidon DB Client

Helidon SE is a compact toolkit that embraces the latest Java
SE features, such as reactive streams, asynchronous and
functional programming, and fluent-style APIs. Helidon DB Client
API, designed for Helidon SE, simplifies how you work with
databases by abstracting the type of the database. The API can
be used for both relational and nonrelational databases.

Helidon DB Client provides

Using the API with MongoDB simply requires adding the
following Maven dependency:

Database configuration abstraction: Using a Helidon
configuration allows database implementation-specific
configuration options without the need to use database
implementation-specific APIs. This allows for seamless
switching between databases based on configuration.



Statement configuration abstraction: Using a Helidon
configuration allows the use of database-specific
statements. This enables the use of different databases on
different environments without changing code.



A unified API for data access and querying: Thanks to the
statement configuration abstraction, you can invoke a
statement against relational or nonrelational databases
(such as MySQL and MongoDB) without modifying source
code.



Reactive database access with backpressure: Currently
the client supports a natively reactive driver for MongoDB
and an executor service-wrapped support for any JDBC
driver. This allows for seamless use of JDBC drivers in a
reactive nonblocking environment, including support for
backpressure (the result set is processed as requested by
the query subscriber).



Observability: The API offers support for health checks,
metrics, and tracing.



<dependency><dependency>
 <groupId>io.helidon.dbclient</gro <groupId>io.helidon.dbclient</gro
 <artifactId>helidon-dbclient <artifactId>helidon-dbclient
 </dependency> </dependency>

https://medium.com/helidon/helidon-with-micronaut-data-repositories-daf6ddefee0b
https://medium.com/helidon/helidon-db-client-e12bbdc85b7
https://www.mysql.com/
https://www.mongodb.com/

And a configuration such as this:

Here’s how you can code the Helidon DB Client and register the
endpoints to access the data source:

You can learn more from “Helidon DB Client” by Tomáš Kraus.

The Neo4j graph database

Helidon works with relational and nonrelational databases, SQL
and NoSQL databases, and many more databases. These
include JDBC, MongoDB via the MongoDB client, and Oracle
Database JSON database via Oracle’s Simple Oracle Document
Access (SODA) API – and recently, the Helidon project added
integration with the graph database Neo4j. The Neo4j integration
can be enabled with the following Maven dependencies:

db:db:
 source: "mongoDb" source: "mongoDb"
 connection: connection:
 url: "mongodb://127.0.0.1:27017/pokemon" url: "mongodb://127.0.0.1:27017/pokemon"
 statements: statements:
 # Insert operation contains collection na # Insert operation contains collection na
 # Name variable is stored as MongoDB prim # Name variable is stored as MongoDB prim
 insert2: '{ insert2: '{
 "collection": "pokemons", "collection": "pokemons",
 "value": { "value": {
 "_id": $name, "_id": $name,
 "type": $type "type": $type
 } }
 }' }'

Config dbConfig = config.get("db");Config dbConfig = config.get("db");
 DbClient dbClient = DbClient.builder(DbClient dbClient = DbClient.builder(
 // add an interceptor to name // add an interceptor to name
 .addService(DbClientMetrics.c .addService(DbClientMetrics.c
 // add an interceptor to stat // add an interceptor to stat
 .addService(DbClientMetrics.t .addService(DbClientMetrics.t
 .statemen .statemen
 // add an interceptor to all // add an interceptor to all
 .addService(DbClientTracing.c .addService(DbClientTracing.c
 .build(); .build();

 HealthSupport health = HealthSupport. HealthSupport health = HealthSupport.
 .addLiveness(DbClientHealthCh .addLiveness(DbClientHealthCh
 .build(); .build();

 return Routing.builder() return Routing.builder()
 .register(health) .register(health)
 .register(MetricsSupport.crea .register(MetricsSupport.crea
 .register("/db", new PokemonS .register("/db", new PokemonS
 .build(); .build();

<dependency><dependency>
 <groupId>io.helidon.integ <groupId>io.helidon.integ
 <artifactId>helidon-integ <artifactId>helidon-integ
 <version>${helidon.versio <version>${helidon.versio

https://medium.com/helidon/helidon-db-client-e12bbdc85b7
https://neo4j.com/

As with all Helidon features, configuration may be done in the
 file:

Or it can be done via a MicroProfile configuration:

Here’s how to use Neo4j with Helidon SE:

Neo4j can be used in Helidon SE by simply injecting the driver,
for example:

Coherence Community Edition

 </dependency> </dependency>
 <dependency> <dependency>
 <groupId>io.helidon.integ <groupId>io.helidon.integ
 <artifactId>helidon-integ <artifactId>helidon-integ
 <version>${helidon.versio <version>${helidon.versio
 </dependency> </dependency>
 <dependency> <dependency>
 <groupId>io.helidon.integ <groupId>io.helidon.integ
 <artifactId>helidon-integ <artifactId>helidon-integ
 <version>${helidon.versio <version>${helidon.versio
 </dependency> </dependency>

application.yamlapplication.yaml

neo4j:neo4j:
 uri: bolt://localhost:7687 uri: bolt://localhost:7687
 authentication: authentication:
 username: neo4j username: neo4j
 password: secret password: secret
 pool: pool:
metricsEnabled: true #should be explicitly enmetricsEnabled: true #should be explicitly en

neo4j.uri=bolt://localhost:7687neo4j.uri=bolt://localhost:7687
neo4j.authentication.username=neo4jneo4j.authentication.username=neo4j
neo4j.authentication.password: secretneo4j.authentication.password: secret
neo4j.pool.metricsEnabled: true #should be exneo4j.pool.metricsEnabled: true #should be ex

Neo4JSupport neo4j = Neo4JSupport.builder()Neo4JSupport neo4j = Neo4JSupport.builder()
 .config(config) .config(config)
 .helper(Neo4JMetricsSupport.create()) .helper(Neo4JMetricsSupport.create())
 .helper(Neo4JHealthSupport.create()) .helper(Neo4JHealthSupport.create())
 .build(); .build();

 Routing.builder() Routing.builder()
 .register(health) / .register(health) /
 .register(metrics) / .register(metrics) /
 .register(movieService) .register(movieService)
 .build(); .build();

@Inject@Inject
Driver driver;Driver driver;

Coherence Community Edition (CE) is a reliable and scalable
platform for state management. It integrates with Helidon,
GraalVM, Oracle Database, and Oracle Database cloud
services.

Coherence CE contains the in-memory data grid functionality
necessary to write microservices applications. Its features
include

Helidon 2.2.0 supports the MicroProfile GraphQL specification,
which is an open source data query and manipulation language
for APIs. A recent article, “Access Coherence using GraphQL,”
by Tim Middleton, shows how to create and use GraphQL
endpoints to access data in Coherence CE seamlessly with
Helidon MP.

Messaging for Oracle Advanced Queuing

Due to the nature of microservices environments, messaging is
often used for interservice communications, and that’s what the
MicroProfile Reactive Messaging specification was designed for.

The Oracle Advanced Queuing (AQ) messaging system has
been part of Oracle Database since 2002. The system, which
supports Java Message Service (JMS), has features that make it
perfect for microservices development, including

The integration of Oracle AQ with Helidon is powerful and simple
to use. Here is an example where an Oracle AQ JMS (“order-
placed”) message is received, the underlying JDBC connection
is obtained and used to do database work (check inventory), and
a response message (“inventory-exists”) is sent.

Fault-tolerant automatic sharding

Scalable caching, querying, aggregation, transactions, and
in-place processing



Polyglot programming on the grid side with GraalVM

Persistence and data source integration

Creating events, sending messages, and streaming

A comprehensive security model

Unlimited clients in polyglot languages and over REST

Docker and Kubernetes support, with Kibana and
Prometheus dashboards



Transactional queues and an “exactly once” delivery
guarantee so you’re not forced to code logic for
idempotency



The ability to conduct database work and produce and
consume messages within the same local transaction. This
facilitates event sourcing, sagas, and general transaction
communication patterns used in microservices with atomic
(and, again, exactly-once delivery) guarantees not possible
with other messaging and database systems



https://coherence.community/
https://medium.com/oracle-coherence/access-coherence-using-graphql-9f24a5ff8f82
https://download.eclipse.org/microprofile/microprofile-reactive-messaging-1.0/microprofile-reactive-messaging-spec.pdf

These three actions are conducted within the same local
transaction such that all either fail or succeed, thus relieving an
administrator or developer from needing to intervene and rectify
a system due to a failure or add logic to a microservice to handle
failures such as duplicate deliveries or inconsistent data.

See “Helidon messaging with Oracle AQ,” by Daniel Kec, for a
deeper look.

GraalVM Native Image

All the features mentioned in this article are compatible with
GraalVM, which means that Helidon microservices using those
features can be built into a GraalVM Native Image, a technology
that performs an ahead-of-time compilation of Java code to
create a standalone executable.

With the new Oracle Database 21c, GraalVM Native Image
support also works with Oracle Universal Connection Pool
(UCP) wallets and the Oracle Autonomous Transaction
Processing cloud database service.

You can learn more about this and the JDBC 21.1.0.0
reconfiguration for GraalVM Native Image in “New Year goodies
—Oracle JDBC 21.1.0.0 on Maven Central,” by Kuassi Mensah.

Integration with sagas and MicroProfile LRA

Applications that require data coordination between multiple
microservices create challenges for data consistency and
integrity. Those challenges necessitate changes in the
transaction processing and data patterns used by them.

Traditional systems rely on two-phase commit or other extended
architecture (XA) protocols that use synchronous
communication, resource locking, and recovery via rollback or
commit. While those protocols provide strong consistency and
isolation, they do not scale well in a microservices environment
due to the latency of held locks. That means such methods are
suitable for only a small subset of microservices use cases—
generally those with low throughput requirements.

The saga design pattern, by contrast, uses asynchronous
communication and local resources only (thus, no distributed

@Incoming("orderplaced")@Incoming("orderplaced")
@Outgoing("inventoryexists")@Outgoing("inventoryexists")
@Acknowledgment(Acknowledgment.Strategy.NONE)@Acknowledgment(Acknowledgment.Strategy.NONE)
public CompletionStage<Message<String>> reserpublic CompletionStage<Message<String>> reser
 return CompletableFuture.supplyAsync(return CompletableFuture.supplyAsync(
 Connection jdbcConnection = msg.g Connection jdbcConnection = msg.g
 String inventoryStatus = getInventoryForOr String inventoryStatus = getInventoryForOr
 return Message.of(inventoryStatus return Message.of(inventoryStatus
 }); });
}}

https://medium.com/helidon/helidon-messaging-with-oracle-aq-a023928dbbb8
https://www.graalvm.org/reference-manual/native-image/
https://blogs.oracle.com/database/introducing-oracle-database-21c
https://www.oracle.com/autonomous-database/autonomous-transaction-processing/
https://medium.com/oracledevs/new-year-goodies-oracle-jdbc-21-1-0-0-on-maven-central-8173a54e50f9
https://microservices.io/patterns/data/saga.html

Paul Parkinson
As the Data and Transaction Processing
Development Lead for the Helidon
Microservices Cloud Platform, Paul
Parkinson works with a wide variety of
languages and technologies such as
Oracle Database, Java MicroProfile, Oracle
Cloud Infrastructure, Sagas, Command and
Query Responsibility Segregation (CQRS),
Event Sourcing, Kubernetes, Istio, Jaeger,
Grafana, Kiali, Open Service Broker, Kafka,
and Event Broker. Follow him
@paulparkinson.

Share this Page

locks) and recovery via compensating actions. The saga pattern
scales well, so it is well suited for long running transactions in a
microservices environment. Additional application design
considerations are necessary, however, for read isolation and
compensation logic and debugging can be tricky.

That’s where the MicroProfile Long Running Actions (LRA) API
comes in. You can run MicroProfile LRA in Helidon. See more in
my article, “Long running actions for MicroProfile on Helidon…
Data integrity for microservices.”

Conclusion

Helidon is an extremely versatile Java library for accessing data
in microservices. This article briefly described the capabilities of
Helidon SE and Helidon MP to give you an overall picture of the
landscape.

Dig deeper

Helidon: A simple cloud native framework

Reactive streams programming over WebSockets with
Helidon SE



Hello, Coherence Community Edition, Part 1: Creating
cloud native stateful applications that scale



Transition from Java EE to Jakarta EE

Building Microservices with Micronaut

GraalVM: Native Images in Containers


Facebook


Twitter


LinkedIn


Email

https://blogs.oracle.com/javamagazine/paul-parkinson
https://blogs.oracle.com/javamagazine/paul-parkinson
https://twitter.com/paulparkinson
https://medium.com/oracledevs/long-running-actions-for-microprofile-on-helidon-data-integrity-for-microservices-2bd4d14fe955
https://blogs.oracle.com/javamagazine/helidon-a-simple-cloud-native-framework
https://blogs.oracle.com/javamagazine/reactive-streams-programming-over-websockets-with-helidon-se
https://blogs.oracle.com/javamagazine/hello-coherence-community-edition-creating-cloud-native-stateful-applications-that-scale-part-1
https://blogs.oracle.com/javamagazine/transition-from-java-ee-to-jakarta-ee
https://blogs.oracle.com/javamagazine/building-microservices-with-micronaut
https://blogs.oracle.com/javamagazine/graalvm-native-images-in-containers

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

