
DESIGN PATTERNS

The Decorator Pattern in Depth
Add functionality to a class without
modifying it.
by Ian Darwin

Interior decorators are people who come to your house and tell you how
to modify the look and feel of your rooms—for example, what furniture
and wall or floor covering you should add. Decorators in software are
pieces of software that add functionality to code by “wrapping” a target
class without modifying it. They exemplify the open/closed principle,
which states that classes should be open for extension but closed to
modification.

Consider the set of classes needed to manage orders for a small art
photography business. The business sells prints, which can be made in
various sizes, on matte or glossy paper, with or without a frame, without a
mat or with one or more mats that come in many colors. It also sells
prints digitally through a variety of stock photo agencies.

Your first thought might be to use inheritance to implement this data
model. However, trying to make a different class for every combination of
paper finish, paper size, with and without a mat, and with and without a
frame would result in a true explosion of classes. And it would all fall
apart as soon as market conditions changed and the business tried to
add another variable. The opposite approach—trying to make one class
to handle all the combinations—would result in a tangled mess of
statements that are fragile and difficult to understand and maintain.

One of the best solutions to this problem is the Decorator pattern, which
allows you to add functionality to an existing component from outside the
class. To do this, you create a class called (typically
abstract), which needs to implement the same interface as the original

 (the class to which we’re adding functionality); that is, the
 needs to be able to substitute for the original, using its

interface or class definition as appropriate. The will hold an
instance of the class, which it is also extending. The

 will, thus, be in both a has-a and an is-a relationship with the
. So you’ll often see code like this in the :

As a result of this inheritance, the or its subclasses can be
used where the original was used, and it will directly delegate business
methods to the original. You can then make subclasses from this

. The subclasses will usually add “before” and/or “after”
functionality to some or all of the methods that they delegate to the real
target; this is, in fact, their raison d’être.

In the photo business example, the original is .
Its constructor takes the artistic name of the image and the name of the

ifif

DecoratorDecorator

ComponentComponent

DecoratorDecorator

DecoratorDecorator

ComponentComponent

DecoratorDecorator

ComponentComponent DecoratorDecorator

public abstract class Decorator extends Component {public abstract class Decorator extends Component {
 protected Component target; protected Component target;

 } }

DecoratorDecorator

DecoratorDecorator

ComponentComponent PhotoImagePhotoImage

The Decorator Pattern in Depth

Using Frameworks

Border Decorator

I/O Streams

Decorator Versus Proxy

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/design-patterns-2
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

file in which the master version of the sellable image is stored. The code
that follows can be found online.

The class both extends and has a photo. You
can then have and decorators for the two main
ways of selling. The constructor represents a physical print, so it
has a paper size (width and height, in inches). For , you can have

, , and other s, with parameters as needed (for
example, mats have color).

First, here are a few examples of using this set of classes, from
:

The method takes a argument, providing
a degree of type safety. In this simple demo, this method just prints the
argument by calling , to show the effect of the delegation
methods.

Here is the code for (the):

DecoratorDecorator PhotoImagePhotoImage

PrintPrint DigitalImageDigitalImage

PrintPrint

PrintPrint

FrameFrame MatMat DecoratorDecorator

ImageSales.java

// Create an undecorated image// Create an undecorated image
 final PhotoImage image = new PhotoImage(final PhotoImage image = new PhotoImage(
 "Sunset at Tres Ríos", "2020/ifd12345.jpg") "Sunset at Tres Ríos", "2020/ifd12345.jpg")

 // Make a print of that, on US letter-size paper // Make a print of that, on US letter-size paper
 Print im1 = new Print(11, 8.5, image); Print im1 = new Print(11, 8.5, image);
 addToPrintOrder(im1); addToPrintOrder(im1);

 // Make a 19x11 print of a second image, matted // Make a 19x11 print of a second image, matted
 Print im2 = Print im2 =
 new Print(19, 11, new Print(19, 11,
 new Frame(new Frame(
 new Mat("Lime Green", new Mat("Lime Green",
 new PhotoImage("Goodbye at the S new PhotoImage("Goodbye at the S
 "1968/ifd.00042.jpg")))); "1968/ifd.00042.jpg"))));
 addToPrintOrder(im2); addToPrintOrder(im2);

 // Make a digital print sale // Make a digital print sale
 PhotoImage dig = new DigitalImage(image, StockAg PhotoImage dig = new DigitalImage(image, StockAg
System.out.println(dig);System.out.println(dig);

addToPrintOrder()addToPrintOrder() PrintPrint

toString()toString()

PhotoImagePhotoImage ComponentComponent

/** A PhotoImage is a picture that I took at some po/** A PhotoImage is a picture that I took at some po
 */ */
 public class PhotoImage { public class PhotoImage {
 /** The human-readable title */ /** The human-readable title */
 String title; String title;

 /** Where the actual pixels are */ /** Where the actual pixels are */
 String fileName; String fileName;

 /** How many pixels are there in the image f /** How many pixels are there in the image f
 int pixWidth, pixHeight; int pixWidth, pixHeight;

 public PhotoImage() { public PhotoImage() {
 // Empty; used in Decorators // Empty; used in Decorators
 } }

 public PhotoImage(String title, String fileN public PhotoImage(String title, String fileN
 super(); super();
 this.title = title; this.title = title;
 this.fileName = fileName; this.fileName = fileName;
 } }

 /** Get a printable description; may be more /** Get a printable description; may be more
 * but in any case, it's the example delegat * but in any case, it's the example delegat
 */ */
 public String getDescription() { public String getDescription() {
 return getTitle(); return getTitle();
 } }

 /** Default toString() just uses getDescript /** Default toString() just uses getDescript
 @Override @Override
 public String toString() { public String toString() {
 return getDescription(); return getDescription();
 } }

https://github.com/IanDarwin/patterns-demos/tree/master/src/main/java/structure/decorator

Here is part of the code for , which is the
class:

Here is part of one of the decorators, the decorator:

One of the key parts of this code is how the class’s
 calls the target’s method of the same name and

also adds its own functionality to it. This is the “delegate but also add
functionality” part of the pattern. And it’s why, when you run the main
program, you get this output for the object:

It might seem unusual to put the secondary characteristics (paper size,
mat color) as the first arguments to the constructors. If you’re as
compulsive as I am about such things, you’d normally put the principal
element—the —as the first argument. However, in practice,
putting the secondary items first facilitates the coding style with which
multiple decorators are typically combined. Take a look back at the main
program and imagine lining up the brackets and closing arguments when
you have that many nested constructor calls. But if you don’t like it, that’s
fine; it’s just a style issue. Picking one way and being consistent in your
hierarchy will make your life easier.

If the Decorator pattern looks familiar to you, it should. This is the same
way that the common java.io Streams and Readers and Writers have
worked since the beginning of Java.

 // setters and getters... // setters and getters...
}}

ImageDecoratorImageDecorator DecoratorDecorator

public abstract class ImageDecorator extends PhotoImpublic abstract class ImageDecorator extends PhotoIm
 protected PhotoImage target; protected PhotoImage target;

 public ImageDecorator(PhotoImage target) { public ImageDecorator(PhotoImage target) {
 this.target = target; this.target = target;
 } }

 @Override @Override
 public String getDescription() { public String getDescription() {
 return target.getDescription(); return target.getDescription();
 } }

 @Override @Override
 public String toString() { public String toString() {
 return getDescription(); return getDescription();
 } }
}}

PrintPrint

/** A Print represents a PhotoImage with the physica/** A Print represents a PhotoImage with the physica
 */ */
public class Print extends ImageDecorator {public class Print extends ImageDecorator {
 /** PrintWidth, PrintHeight are in inches for th /** PrintWidth, PrintHeight are in inches for th
 private double printWidth, printHeight; private double printWidth, printHeight;

 public Print(double printWidth, double printHeig public Print(double printWidth, double printHeig
 super(target); super(target);
 this.printWidth = printWidth; this.printWidth = printWidth;
 this.printHeight = printHeight; this.printHeight = printHeight;
 } }

 @Override @Override
 public String getDescription() { public String getDescription() {
 return target.getDescription() + " " + return target.getDescription() + " " +
 String.format("(%4.1f x %4.1f in)", String.format("(%4.1f x %4.1f in)",
 getPrintWidth(), getPrintH getPrintWidth(), getPrintH
 } }
 // setters and getters... // setters and getters...
}}

PrintPrint

getDescription()getDescription()

PrintPrint

Goodbye at the Station, Matted(Lime Green), Framed

ComponentComponent

The generic view of the class hierarchy is shown in Figure 1, where
 is the , and subclass
, and and are other decorators. The only

operation illustrated is ; others would exist in the
production code.

Figure 1. Decorator hierarchy

There is no special reason that and must be
decorators rather than the shown in Figure 1—
that is, subclassing directly. The reason I made them
decorators is so that I can, as in the code sample, create one

 and use it to create both a and a .
You might not need to do the equivalent operation in your class
hierarchy; it depends on your use cases as to whether you make classes
like that be s or decorators. Note also that for very
simple cases, such as where you will only ever have one decorator class,
you could skip the definition of the as a separate abstract
class and do the delegation directly in your actual decorator. The
separate class is just a convenient place to build a hierarchy when you
expect you will have multiple decorators.

All this code is on GitHub, in the subdirectory
.

Using Frameworks

Various widely used frameworks provide mechanisms for intercepting
calls on managed beans. For example, Java EE’s interceptors and
Spring’s aspect-oriented programming (AOP) offer both predefined
interceptors and the ability to define your own. These are decorators. For
example, both frameworks provide annotation-based transaction
management, in which you can say something like this:

Behind the scenes, both frameworks provide an interceptor whose
pseudocode is probably akin to the following. The real thing will be more
complex because of different transaction types (read-only, read-write)
and different needs (transaction required, new transaction required,
etcetera), different handling of checked versus unchecked exceptions,
and so on.

ComponentComponent PhotoImagePhotoImage PrintPrint DigitalImageDigitalImage

DecoratorDecorator MatMat FrameFrame

getDescription()getDescription()

PrintPrint DigitalImageDigitalImage

ConcreteComponentConcreteComponent

PhotoImagePhotoImage

PhotoImagePhotoImage PrintPrint DigitalImageDigitalImage

ConcreteComponentConcreteComponent

DecoratorDecorator

src/main/java/structure/decorator

public class WidgetService {public class WidgetService {

 @Transactional @Transactional
 public void saveWidget(Widget w) { public void saveWidget(Widget w) {
 entityManager.persist(w); entityManager.persist(w);
 } }
}}

public class TransactionInterceptor {public class TransactionInterceptor {

 UserTransaction transaction; // Injected UserTransaction transaction; // Injected

 // PSEUDOCODE // PSEUDOCODE

 public void interceptTransaction(public void interceptTransaction(

You can write your own interceptors using the EJB3 interceptor API (see
) or Spring’s AOP (see).

Border Decorator

Historically, many of the earliest uses of the Decorator pattern were
graphical add-ons, for example, to add a nice border to a text area or
dialog box as part of a layout. Decorators were used this way in many
early and influential window systems, including Smalltalk and InterViews.
You’d use these as something like the following pseudocode (the

 constructor takes row and column arguments):

Depending on your application, you might or might not need to forward all
delegated methods. An issue with is that if the component
being decorated has a large number of methods (it shouldn’t, if you
remembered to keep things simple), and you need to forward all the
methods, the number of delegation methods required can make this
pattern cumbersome. Yet if you don’t forward a particular inherited
method, because of how inheritance works that method will (if called)
execute in the context of the alone, not the target, and this
can lead to bad results. You can use the IDE to generate all the
delegates (for example, in Eclipse, using the

 option), but that does not
lead to maintainable code. The Strategy pattern or the Proxy pattern
might be a good alternative way of adding functionality.

The people who wrote Java’s Swing UI package were aware of this
issue. They wanted to decorate (a subclass of the Abstract
Window Toolkit’s), but that dear thing has around 120 public
methods. To allow decoration in the original sense, without making you
subclass it just for this purpose, they took a variant approach and
provided the Swing object. This object isn’t used like a
traditional decorator but as what you might roughly call a “plugin
decorator,” using these methods defined in :

This class is in the package. You get
instances of from by calling
methods such as and

.

I/O Streams

If the Decorator pattern looks familiar to you, it should. This is the same
way that the common and s and s

 Method method, Object target, Object[] a Method method, Object target, Object[] a

 if (transaction.getStatus() != Status.No if (transaction.getStatus() != Status.No
 transaction.begin(); transaction.begin();
 } }
 try { try {
 method.invoke(target, args); method.invoke(target, args);
 transaction.commit(); transaction.commit();
 } catch (Exception ex) { } catch (Exception ex) {
 transaction.rollback(); transaction.rollback();
 throw ex; throw ex;
 } }
 } }
}}

@Interceptor@Interceptor @Around@Around

TextFieldTextField

Component niceTextBox = new BorderDecorator(new TextComponent niceTextBox = new BorderDecorator(new Text
 Component niceTextArea = Component niceTextArea =
 new BorderDecorator(new ScrollingDecorator(n new BorderDecorator(new ScrollingDecorator(n

DecoratorDecorator

DecoratorDecorator

Source → Generate Delegate Methods

JComponentJComponent

ComponentComponent

BorderBorder BorderBorder

JComponentJComponent

public void setBorder(Border);public void setBorder(Border);
public Border getBorder();public Border getBorder();

BorderBorder javax.swing.border

BorderBorder javax.swing.BorderFactoryjavax.swing.BorderFactory

createEtchedBorder()createEtchedBorder()

createTitledBorder()createTitledBorder()

java.io Streamsjava.io Streams ReaderReader WriterWriter

Ian Darwin
Ian Darwin (@Ian_Darwin) is a Java Champion who
has done all kinds of development, from mainframe
applications and desktop publishing applications for
UNIX and Windows, to a desktop database
application in Java, to healthcare apps in Java for
Android. He’s the author of Java Cookbook and
Android Cookbook (both from O’Reilly). He has also
written a few courses and taught many at Learning
Tree International.

Share this Page

have worked since the beginning of Java. You’ve probably seen code like
this a million times:

Here, there is no separate class; the classes involved are all
just subclass or (or and
for binary files) directly, and all the classes have constructors that accept
an instance of the top-level class (or any subclass, of course) as an
argument. But this usage fits in with the basic description of the
Decorator pattern: one class adds functionality to another by wrapping it.

Decorator Versus Proxy

Proxy is another pattern in which classes expand upon other classes,
often using the same interface as the object being proxied. As a result,
people sometimes confuse the Proxy pattern with the Decorator pattern.
However, Decorator is primarily about adding functionality to the target.
The Gang of Four definition of Proxy is that it’s about controlling access
to the target. This control could be to provide lazy creation for expensive
objects, to enforce permissions or a security-checking point of view (a
security proxy), or to hide the target’s location (such as a remote access
proxy as used in RPC-based networking APIs such as RMI, remote EJB
invocation, the JAX-RS client, or the JAX-WS client).

In the lazy-creation situation, a lightweight proxy is created with the same
interface as the expensive (heavyweight) object, but none or only a few
of the fields are filled in (ID and title, perhaps). This proxy handles
creation of the heavyweight object only when and if a method that
depends on the full object is called.

In the networking situation, the client code appears to be calling a local
object, but it is in fact calling a proxy object that looks after the
networking and the translation of objects to and from a transmissible
format, all more or less transparently. With the Decorator pattern, the
client is usually responsible for creating the decorator, often at the same
time that it creates the object being decorated.

Conclusion

Decorators are a convenient way of adding functionality to a target class
without having to modify it. Decorators usually provide the same API as
the target, and they do additional work before or after forwarding the
arguments to the target object. Try using the Decorator pattern the next
time you need to add functionality to a small set of classes.

This article was originally published in the November/December 2018 issue of Java Magazine.

// From IOStreamsDemo.java// From IOStreamsDemo.java
 BufferedReader is = BufferedReader is =
 new BufferedReader(new FileReader("some file new BufferedReader(new FileReader("some file
 PrintWriter pout = PrintWriter pout =
 new PrintWriter(new FileWriter("output filen new PrintWriter(new FileWriter("output filen
 LineNumberReader lrdr = LineNumberReader lrdr =
 new LineNumberReader(new FileReader(foo.getF new LineNumberReader(new FileReader(foo.getF

DecoratorDecorator

ReaderReader WriterWriter InputStreamInputStream OutputStreamOutputStream



https://blogs.oracle.com/javamagazine/ian-darwin
https://blogs.oracle.com/javamagazine/ian-darwin
http://www.informit.com/store/design-patterns-elements-of-reusable-object-oriented-9780201633610
https://www.oracle.com/a/ocom/docs/corporate/java-magazine-nov-dec-2018.pdf

 

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

