
TOOLS

Runtime Code Generation with
Byte Buddy
Create agents, run tools before main()
loads, and modify classes on the fly.

by Fabian Lange

November 1, 2015

An often overlooked feature of the Java platform is the ability to
modify a program’s bytecode before it is executed by the JVM’s
interpreter or just-in-time (JIT) compiler. While this capability is
used by tools, such as profilers and libraries that do object-
relational mapping, it is rarely used by application developers.
This represents untapped potential, because generating code at
runtime allows for easy implementation of cross-cutting concerns
such as logging or security, changing the behavior of third-party
libraries—sometimes in the form of mocking—or writing
performance data collection agents.

Unfortunately, generating bytecode at runtime has been difficult
until recently. There are presently three major libraries for
generating bytecode:

These libraries were all designed to write and modify specific
bytecode instructions from Java code. But to be able to use
them, you need to understand how bytecode works, which is
quite different than understanding Java source code. In addition,
these libraries are harder to use and test than Java code,
because the Java compiler cannot verify whether, for example,
the argument order of a method call matches its signature or
whether it violates the Java Language Specification. Lastly, due
to their age, these libraries do not all support the new Java
features, such as annotations, generics, default methods, and
lambdas.

ASM

cglib

Javassist

Runtime Code Generation with
Byte Buddy

Hello World, Byte Buddy

ElementMatchers and
Implementations

Mocking

AOP Agent with Byte Buddy

Using an Agent Without -
javaagent

Conclusion

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/tools-7
https://docs.oracle.com/javase/specs/jls/se7/html/index.html
https://asm.ow2.io/
https://github.com/cglib/cglib
https://www.javassist.org/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

The following example illustrates how you would implement a
method that calls another static method with a single string
parameter using the ASM library:

cglib and Javassist are not much different. They all require
usage of bytecode and String representation of signatures,
which as you can see looks more like assembly language, rather
than Java.

Byte Buddy is a new library that takes a different approach to
solving this problem. Byte Buddy’s mission is to make runtime
code generation accessible to developers who have little to no
knowledge of Java instructions. The library also aims to support
all Java features, and is not limited to generating dynamic
implementations for interfaces, which is the approach used in
the JDK’s built-in proxy utilities. The Byte Buddy API abstracts
away all bytecode operators behind plain old Java method calls.
However, it retains a backdoor to the ASM library, on top of
which Byte Buddy is implemented.

Note: All the examples in this article are using the 0.6 API of
Byte Buddy.

Hello World, Byte Buddy

The following HelloWorld example from the Byte Buddy
documentation (see Listing 1) presents everything you need to
create a new class at runtime in a concise way.

Listing 1.

All of Byte Buddy’s APIs are builder-style fluent APIs supporting
the functional style. You start off by telling Byte Buddy which
class you want to subclass. While in this example you simply
subclass you could subclass any non-final class, and

methodVisitor.visitVarInsn(Opcodes.ALOAD, 0);methodVisitor.visitVarInsn(Opcodes.ALOAD, 0);
methodVisitor.visitMethodInsn(methodVisitor.visitMethodInsn(
 Opcodes.INVOKESTATIC Opcodes.INVOKESTATIC
 "com/instana/agent/Agent" "com/instana/agent/Agent"
 "record" "record"
 "(Ljava/lang/String;)V" "(Ljava/lang/String;)V"
))

Class<? extends Object> clazz = new ByteBuddyClass<? extends Object> clazz = new ByteBuddy
 .subclass(Object.class) .subclass(Object.class)
 .method(ElementMatchers.named("toString")) .method(ElementMatchers.named("toString"))
 .intercept(FixedValue.value("Hello World!" .intercept(FixedValue.value("Hello World!"
 .make() .make()
 .load(getClass().getClassLoader(), .load(getClass().getClassLoader(),
 ClassLoadingStrategy.Default.WRAPPER) ClassLoadingStrategy.Default.WRAPPER)
 .getLoaded(); .getLoaded();
assertThat(clazz.newInstance().toString(),assertThat(clazz.newInstance().toString(),
 is("Hello World!")); is("Hello World!"));

ObjectObject

https://bytebuddy.net/

Byte Buddy will ensure that the generic return type will be
. Now that you have a

builder for your subclass, you can tell Byte Buddy to intercept
calls to a method that is named and return a fixed
value instead of calling the method that is already defined by

.

You might wonder about the term intercept here. Usually when
you subclass something, you typically use the term override
when you change the implementation of a superclass method in
a subclass. Intercept is a term from aspect-oriented
programming (AOP), which describes a more powerful concept
of “what to do” when a method is called.

After you finish declaring how the subclass behaves, you invoke
 to get a so-called representation of your class.

This representation behaves like a file and, in fact, it
even supports functions to store the class file.

Finally, as shown in Listing 1, you load the class using a class
loader and get a reference to the loaded class. When getting
started with Byte Buddy, the used to
do this does not usually matter. However, there are situations in
which you need a specific class loader to load the new class for
visibility purposes or for enforcing a specific loading order.

Note that a class generated by Byte Buddy is indistinguishable
from regular classes. Unlike other libraries or proxies, there are
no traces left behind. The generated code fully resembles the
code that a Java compiler would create for implementing such a
subclass.

ElementMatchers and Implementations

When you use Byte Buddy to add or change behavior of classes,
the most common task is to look up fields, constructors, and
methods. To ease these tasks Byte Buddy comes with plenty of
useful predefined s, such as

 and , which check the
method signature. It also has convenience aliases such as

 and , which use common Java
naming patterns to match the method name. Using the
predefined matchers allows for a concise description of the
methods to intercept, which would otherwise be quite verbose to
write. Additionally, it is possible to implement a custom

 to cover any more complex use case.

Additionally, there exist many predefined replacement
implementations to be used in . Two examples
are , which can invoke a different method using
parameters, and , which uses the identical
parameters to call the same method on another object.

An even more powerful interception mechanism is represented
by : When delegating to a method, you can

Class<? extends SuperClass>Class<? extends SuperClass>

toStringtoString

java.lang.Objectjava.lang.Object

makemake UnloadedUnloaded

.class.class

ClassLoadingStrategyClassLoadingStrategy

ElementMatcherElementMatcher

hasParameter()hasParameter() isAnnotatedWith()isAnnotatedWith()

isEquals()isEquals() isSetter()isSetter()

ElementMatcherElementMatcher

intercept()intercept()

MethodCallMethodCall

ForwardingForwarding

MethodDelegationMethodDelegation

first execute your custom code, and then delegate the call to the
original implementation. Additionally, you can also dynamically
access the information of the original call site using the

 annotation, as shown in Listing 2. When delegating to
other methods, you can also dynamically access the information
of the original call site, as shown next.

Listing 2.

 automatically looks up the best match of
method signatures in case multiple interception targets are
available. While the lookup is powerful and can be customized, I
recommend keeping the lookup simple and understandable.
After the method has been invoked, the original call continues,
thanks to .

The target method can take a couple of annotated parameters.
To access the arguments of the originating method, you can use

 or . To obtain
information about the originating method itself, you can use

. The type of that parameter can be
, , or even

 (the latter, if used with
Java 7 or later). These arguments provide information about
where the method has been called from, which could be useful
for debugging, or even about taking different code paths, in the
event that the same method is an interception target for multiple
methods.

To call the originating method or its super method from the target
method, Byte Buddy provides and

 parameters.

Mocking

Sometimes you want to write a unit test for a scenario that can
happen at runtime, but you cannot provoke that scenario reliably
for the purpose of the test, if at all. For instance, in Listing 3, the
random number generator needs to produce a specific result for
you to test the control flow.

@Origin@Origin

public static class Agent {public static class Agent {
 public static String record(@Origin Method public static String record(@Origin Method
 System.out.println(m + " called"); System.out.println(m + " called");
 } }
}}

Class<?> clazz = new ByteBuddy()Class<?> clazz = new ByteBuddy()
 .subclass(Object.class) .subclass(Object.class)
 .method(ElementMatchers.isConstructor()) .method(ElementMatchers.isConstructor())
 .intercept(MethodDelegation .intercept(MethodDelegation
 .to(Agent.class) .to(Agent.class)
 .andThen(SuperMethodCall.INSTANCE)) .andThen(SuperMethodCall.INSTANCE))
 // & make instance; // & make instance;

MethodDelegationMethodDelegation

andThen(SuperMethodCall.INSTANCE)andThen(SuperMethodCall.INSTANCE)

@Argument(position)@Argument(position) @AllParameters@AllParameters

@Origin@Origin

java.lang.reflect.Methodjava.lang.reflect.Method java.lang.Classjava.lang.Class

java.lang.invoke.MethodHandlejava.lang.invoke.MethodHandle

@DefaultCall@DefaultCall

@SuperCall@SuperCall

Listing 3.

Byte Buddy provides various kinds of interceptors, so writing
mocks, or spies, is easy. However, for more than a few mocks, I
would recommend switching to a dedicated mocking library. In
fact, version 2 of the popular mocking library Mockito is currently
being rewritten to be based on Byte Buddy.

So far, I have used to create what is essentially a
subclass on steroids. Byte Buddy has two other modes of
operation: and . Both options change the
implementation of the specified class; while maintains
existing code, overwrites it. However, these
modifications come with a limitation: to change already loaded
classes, Byte Buddy needs to work as a Java agent (more on
that shortly).

For usage in unit testing or other special cases in which you can
ensure that Byte Buddy loads a class for the first time, you can
change the implementation during load. For that, Byte Buddy
supports a concept called , which
represents Java classes in an unloaded state. You can populate
a pool of them from the (not yet loaded) classpath and modify
classes before loading them. For example, I can modify the

 class in Listing 3, as shown in Listing 4.

Listing 4.

Note: You cannot use for the call to
 here, because this would load the class before Byte

public class Lottery { public class Lottery {
 public boolean win() { public boolean win() {
 return random.nextInt(100) == 0; return random.nextInt(100) == 0;
 } }
}}

Random mockRandom = new ByteBuddy() Random mockRandom = new ByteBuddy()
 .subclass(Random.class) .subclass(Random.class)
 .method(named("nextInt")) .method(named("nextInt"))
 .intercept(value(0)) .intercept(value(0))
 // & make instance; // & make instance;

Lottery lottery = new Lottery(mockRandom); Lottery lottery = new Lottery(mockRandom);
assertTrue(lottery.win());assertTrue(lottery.win());

subclass()subclass()

rebaserebase redefineredefine

rebaserebase

redefineredefine

TypeDescriptionTypeDescription

LotteryLottery

TypePool pool = TypePool.Default.ofClassPath(TypePool pool = TypePool.Default.ofClassPath(
new ByteBuddy()new ByteBuddy()
 .redefine(pool.describe("Lottery") .redefine(pool.describe("Lottery")
 .resolve(), ClassFileLocator.ForClassLoade .resolve(), ClassFileLocator.ForClassLoade
 .method(ElementMatchers.named("win")) .method(ElementMatchers.named("win"))
 .intercept(FixedValue.value(true)) .intercept(FixedValue.value(true))
 // & make and load; // & make and load;

assertTrue(new Lottery().win());assertTrue(new Lottery().win());

Lottery.classLottery.class

describedescribe

https://site.mockito.org/

Buddy can rewrite it. Once a Java class is loaded, it is not
normally possible to unload that class.

AOP Agent with Byte Buddy

In the following example, I create a performance monitoring and
logging agent. It will intercept calls to JAX-WS endpoints and
print how long the call took. Such an agent needs to follow
conventions explained in the Javadoc for

. It is launched using the
 command line argument and executed before the

actual method (hence, the name). Usually
agents install a hook for themselves, which is triggered before
the regular program loads classes. This bypasses the limitation
of not being able to change loaded classes. Agents are
stackable, and you can use as many as you like. Listing 5
shows the code for an agent.

Listing 5.

After obtaining a default , I tell it which classes it
should . This example will modify only classes having
the annotation. Next, I tell the builder how
to those classes. In this example, the agent will
intercept calls to either or annotated methods and
delegate to the method. For this to work, the agent
needs to be hooked into the using

.

The profile method itself uses three annotations: ,
to tell Byte Buddy that the return type needs to be

java.lang.instrumentjava.lang.instrument

-javaagent-javaagent

mainmain premainpremain

public class Agent {public class Agent {
 public static void premain(String args, In public static void premain(String args, In
 new AgentBuilder.Default() new AgentBuilder.Default()
 .rebase(isAnnotatedWith(Path.class)) .rebase(isAnnotatedWith(Path.class))
 .transform((b, td) -> .transform((b, td) ->
 b.method(b.method(
 isAnnotatedWith(GET.class) isAnnotatedWith(GET.class)
 .or(isAnnotatedWith(POST.class .or(isAnnotatedWith(POST.class
 .intercept(to(Agent.class))) .intercept(to(Agent.class)))
 .installOn(inst); .installOn(inst);
}}

@RuntimeType public static Object profile(@Or@RuntimeType public static Object profile(@Or
 @SuperCall Callable<?> c) @SuperCall Callable<?> c)
 throws Exception { throws Exception {
 long start = System.nanoTime(); long start = System.nanoTime();
 try { try {
 return c.call(); return c.call();
 } finally { } finally {
 long end = System.nanoTime(); long end = System.nanoTime();
 System.out.println("Call to " + m + System.out.println("Call to " + m +
 + (end - start) +" ns"); + (end - start) +" ns");
 } }
 } }
}}

AgentBuilderAgentBuilder

rebaserebase

javax.ws.rs.Pathjavax.ws.rs.Path

transformtransform

GETGET POSTPOST

profileprofile

InstrumentationInstrumentation

installOn()installOn()

RuntimeTypeRuntimeType

ObjectObject

adjusted to the real return type used by the method it intercepts;
, to obtain a reference to the actual method intercepted,

which is used to print its name; and , to actually
perform the original method call. In contrast to the previous
example, I need to perform the super call myself, because I want
to be able to have my code executed before and after the
method call—so that I can perform the timing.

Comparing the way Byte Buddy implements method interception
to the default Java , you can see that the
Byte Buddy method is much more optimized due to the fact that
the interception will pass in only the required arguments, while

 must fulfill the following interface:

This benefit is especially noticeable for primitive arguments or
return types, which need to be autoboxed. The additional

 annotation causes Byte Buddy to reduce any
boxing to a minimum. Even though the JVM mostly optimizes
away simple boxings, this is not always true for complex
interfaces such as that of the .

Using an Agent Without -javaagent

Using an agent to generate and modify code at runtime is a
powerful technique; however, forcing the argument
to make it work is sometimes inconvenient. Byte Buddy comes
with a handy convenience feature that uses the Java Attach API,
which originally was designed to load diagnostic tooling at
runtime. It attaches the agent to the currently running JVM. You
need the additional file, which
contains the utility class . With that, you
invoke , which does
the same thing that starting the JVM with did. The
only other difference with this approach is that you do not invoke

, but rather you invoke
.

Conclusion

Despite the existence of dynamic proxies in the JDK and three
popular third-party bytecode-manipulation libraries, Byte Buddy
fills an important gap. Its fluent API uses generics, so you do not
lose track of the actual type you are modifying, which can easily
happen using other approaches. Byte Buddy also comes with a
rich set of matchers, transformers, and implementations, and it
enables their use via lambdas, which results in relatively concise
and readable code.

As a result, Byte Buddy is fully understandable by developers
who are not accustomed to reading bytecodes and working at

OriginOrigin

SuperCallSuperCall

InvocationHandlerInvocationHandler

InvocationHandlerInvocationHandler

Object invoke(Object proxy, Method method, ObObject invoke(Object proxy, Method method, Ob

RuntimeTypeRuntimeType

InvocationHandlerInvocationHandler

-javaagent-javaagent

byte-buddy-agent.jarbyte-buddy-agent.jar

ByteBuddyAgentByteBuddyAgent

ByteBuddyAgent.installOnOpenJDK()ByteBuddyAgent.installOnOpenJDK()

-javaagent-javaagent

installOn (inst)installOn (inst)

installOnByteBuddyAgent()installOnByteBuddyAgent()

Fabian Lange
Fabian Lange (@CodingFabian) is a lead
agent developer and performance geek at
Instana, where he is building IT operations
solutions. He is also a JavaOne Rock Star
speaker.

Share this Page

low levels. With the upcoming version 0.7, Byte Buddy will
support all the infrastructure around generic types. This way,
Byte Buddy allows for easy interaction with generic types and
type annotations even at runtime. As someone who writes a lot
of bytecode-handling code, I both recommend and use this
library. [Byte Buddy received a Duke’s Choice Award at 2015’s
JavaOne conference. —Ed]



Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/fabian-lange
https://blogs.oracle.com/javamagazine/fabian-lange
https://twitter.com/codingfabian
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

