
JAVA SE

Quiz yourself: The scope of
variables and dividing by zero
If a mathematical equation’s
arguments aren’t accessible, what
happens to the math operation?

by Mikalai Zaikin and Simon Roberts

May 17, 2021

If you have worked on our quiz questions in the past, you know
none of them is easy. They model the difficult questions from
certification examinations. We write questions for the certification
exams, and we intend that the same rules apply: Take words at
their face value and trust that the questions are not intended to
deceive you but to straightforwardly test your knowledge of the
ins and outs of the language.

Given the following two methods, which are declared in the
same class

What is the result? Choose one.

A.

public static float divide(float arg1, float public static float divide(float arg1, float
 throws ArithmeticException { // line n1 throws ArithmeticException { // line n1
 return arg1/arg2; return arg1/arg2;
}}

public static void main(String[] args) {public static void main(String[] args) {
 try { try {
 int arg1 = 10; int arg1 = 10;
 int arg2 = 0; int arg2 = 0;
 System.out.printf("Result: %f", divid System.out.printf("Result: %f", divid
 } catch (RuntimeException e) { } catch (RuntimeException e) {
 System.out.printf(System.out.printf(
 "Bad arguments: %d and %d", arg1, "Bad arguments: %d and %d", arg1,
 } }
}}

Quiz yourself: The scope of
variables and dividing by zero

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/java-se-3
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

The answer is A.

B. The answer is B.

C. The answer is C.

D. Compilation fails at line n1. The answer is D.

E. Compilation fails at line n2. The answer is E.

Answer. This is an uncomfortable question because compilation
fails. In real-world daily coding, the problem would be reported
immediately by your development environment. This might make
it seem like an unreasonable question to ask.

Let’s be clear: Exams are not daily coding. The objective is to
probe your understanding. As such, a little care and attention to
detail should lead you to the right answer and, in the process,
allow you to demonstrate an element of core knowledge that is
being legitimately tested. If you’re still uneasy by the end of the
discussion, know that the exam creators try hard to limit the
number of questions that fall into this category, and the
information in the question—specifically “fails at line n2”—should
be used to help you spot the right answer.

Let’s look at the question. The setup has all the hallmarks of
being about the way Java handles division by zero—but it’s not.
It’s about the scope of variables.

In general, a local variable, such as and in this
sample, is visible from the point of declaration to the end of the
immediately enclosing block; that’s the region bounded by curly
braces. As a result, and are not accessible in the

 block, and line n2 fails to compile. This—along with the
assurance that there’s only one correct answer—tells you that
option E is correct.

An important note is that the description of visibility just given
isn’t complete and, therefore, isn’t fully correct. Formal
parameters (such as the variables in the argument list of a
method) will be visible from the point of declaration to the end of
the block that is associated with whatever those variables are
formal parameters to. By way of examples, the variable ,
which is the formal parameter of the method, is visible
throughout the method body. The variable , which is the
formal parameter of the block, is visible throughout that

 block. Similar rules apply to similar situations, including
variables declared in the resources section of a try-with-
resources structure and those declared in loops.

You could fix the compilation error simply by moving the
declarations of the two variables further up in the source code so
they are directly above the keyword. In that case, the code
would compile and run.

Now, to make this question and its discussion more interesting,
consider what would happen if that were the case. After all, the

Result: InfinityResult: Infinity

Result: NanResult: Nan

Bad arguments: 10 and 0Bad arguments: 10 and 0

arg1arg1 arg2arg2

arg1arg1 arg2arg2

catchcatch

argsargs

mainmain

mainmain ee

catchcatch

catchcatch

forfor

trytry

distractors (the wrong answers) were chosen to be at least
tempting, which should be true of all multiple-choice exam
questions.

Perhaps the best starting point is to consider what happens if
you perform a division by zero. It turns out that the result
depends on the type of the expression. If an integer division
expression has zero in the divisor (the bottom part of a fraction),
the code throws an .

In practice, this means that both the divisor and the dividend (the
top) must be of integral types: If either has a floating-point type,
the whole expression has a floating-point type, and no
exceptions are possible. Here are the possible results.

Floating-point expressions with division by zero produce one of
three special values: , , and (“Not a
Number”), as follows:

Because the code could not possibly produce , option B
must be incorrect.

The next consideration is that the variables and are
declared as , but the method takes two
arguments. Would this division be handled in floating-point or
integer arithmetic format? The former. The integer arguments
are promoted to for the method invocation, so a floating-
point expression is evaluated and, again, no exception will be
thrown. This tells you that option C cannot be correct, even if the
scope problem were fixed.

From the previous discussion, you can tell that if the variable
scope issue were fixed and the code were compiled, the output
would be in the form of option A. However, in the code’s current
form, option A is incorrect.

You might then ask the following: If the expression cannot throw
an exception, is it an error that the method declares an
exception that will definitely never arise? The answer is no, and
in fact, it’s a general rule that methods are permitted to declare
exceptions that they never throw.

One reason this is important is that overriding methods are not
permitted to throw checked exceptions that are not permissible
from the method being overridden. On this basis, abstract
methods in interfaces regularly declare exceptions that, given
that they have no implementation, they obviously cannot throw.

It is worth noting that is an unchecked
exception, so there’s never a requirement to declare it on any

ArithmeticExceptionArithmeticException

InfinityInfinity -Infinity-Infinity NaNNaN

If the dividend is nonzero and it has the same sign as the
zero divisor (floating-point arithmetic distinguishes positive
and negative zero), you get .

InfinityInfinity

If the signs are different, you get . -Infinity-Infinity

If both the dividend and divisor are zero, you get NaN.

NaNNaN

arg1arg1 arg2arg2

intint dividedivide floatfloat

floatfloat

ArithmeticExceptionArithmeticException

Mikalai Zaikin
Mikalai Zaikin is a lead Java developer at
IBA IT Park in Minsk, Belarus. During his
career, he has helped Oracle with
development of Java certification exams,
and he has been a technical reviewer of
several Java certification books, including
three editions of the famous Sun Certified
Programmer for Java study guides by
Kathy Sierra and Bert Bates.

Simon Roberts
Simon Roberts joined Sun Microsystems in
time to teach Sun’s first Java classes in the
UK. He created the Sun Certified Java
Programmer and Sun Certified Java
Developer exams. He wrote several Java
certification guides and is currently a
freelance educator who publishes recorded
and live video training through Pearson
InformIT (available direct and through the
O’Reilly Safari Books Online service). He
remains involved with Oracle’s Java
certification projects.

Share this Page

method. However, it is perfectly permissible to do so, even if it’s
unusual and not recommended style. From this, you can
determine that line n1 does not cause a compilation error and
option D is incorrect.

Conclusion. The correct answer is option E.

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/mikalai-zaikin
https://blogs.oracle.com/javamagazine/mikalai-zaikin
https://blogs.oracle.com/web/preview/simon-roberts
https://blogs.oracle.com/web/preview/simon-roberts
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

