
TOOLS

Introducing JobRunr: A
distributed job scheduler for
Java
A quick tutorial on an open source
library that leverages lambdas and
Spring

by Guest Author

January 15, 2021

JobRunr is a library that lets you schedule background jobs
using a Java 8 lambda. You can use any existing method of
Spring services to create a job without the need to implement an
interface. A job can be a short- or long-running process, and it
will be automatically offloaded to a background thread so that
the current web request is not blocked.
To do its job, JobRunr analyzes the Java 8 lambda. It serializes
the lambda as JSON and stores it in your choice of a relational
database or a NoSQL datastore.

If you see that JobRunr is producing too many background jobs
and your server cannot cope with the load, you can easily scale
horizontally just by adding extra instances of the application.
JobRunr will share the load automatically and distribute all jobs
over the different instances of your application.

JobRunr also contains an automatic retry feature with an
exponential back-off policy for failed jobs. There is also a built-in
dashboard that allows you to monitor all jobs. JobRunr is self-
maintaining: Successful jobs are automatically deleted after a
configurable amount of time, so there is no need to perform
manual storage cleanup.

You can find JobRunr on GitHub. I’ve also uploaded the source
for the example below on GitHub. The library is free for
commercial use.

Setting up JobRunr

Introducing JobRunr: A
distributed job scheduler for
Java

Setting up JobRunr

Using JobRunr

The JobRunr dashboard

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/tools-7
https://www.jobrunr.io/en/
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://github.com/jobrunr/jobrunr
https://github.com/jobrunr/example-java-mag
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

Maven dependency. You need to have the following Maven
dependency declared in your file:

Adding required properties. Because you’re using the
 dependency, the rest of the

setup process is easy. Simply add these properties to
:

The first property tells JobRunr to start an instance of a
 that is responsible for processing jobs.

The second property tells JobRunr to start the embedded
dashboard. More documentation is available on jobrunr.io.

By default, the will try to
use your existing in the case of a relational
database to store all the job-related information. However, since
you will use an in-memory datastore, you need to provide a

 bean. The bean will be
provided by the following:

Using JobRunr

Injecting dependencies. To create jobs, inject the jobScheduler
and your existing service from which you want to create a job:

Creating fire-and-forget jobs. Now that you have the
dependencies injected, you can create fire-and-forget jobs using
the method:

Jobs can have parameters, just like any other lambda, for
example:

pom.xmlpom.xml

<dependency><dependency>
 <groupId>org.jobrunr</groupId> <groupId>org.jobrunr</groupId>
 <artifactId>jobrunr-spring-boot-starter</ <artifactId>jobrunr-spring-boot-starter</
 <version>1.2.0</version> <version>1.2.0</version>
</dependency></dependency>

jobrunr-spring-boot-starterjobrunr-spring-boot-starter

application.propertiesapplication.properties

org.jobrunr.background-job-server.enabled=trueorg.jobrunr.background-job-server.enabled=true

org.jobrunr.dashboard.enabled=trueorg.jobrunr.dashboard.enabled=true

BackgroundJobServerBackgroundJobServer

jobrunr-spring-boot-starterjobrunr-spring-boot-starter

DataSourceDataSource

StorageProviderStorageProvider JobMapperJobMapper

jobrunr-spring-boot-starter):java @Bean publijobrunr-spring-boot-starter):java @Bean publi

```java @Inject private JobScheduler```java @Inject private JobScheduler

jobScheduler;jobScheduler;

@Inject private SampleJobService@Inject private SampleJobService

sampleJobService; ```sampleJobService; ```

enqueueenqueue

jobScheduler.enqueue(() ->jobScheduler.enqueue(() ->

sampleJobService.executeSampleJob());sampleJobService.executeSampleJob());

https://search.maven.org/search?q=g:org.jobrunr%20AND%20a:jobrunr-spring-boot-starter
https://www.jobrunr.io/en/documentation/configuration/spring/


What’s going on behind the scenes? JobRunr takes the lambda
and analyzes it using the ASM Java bytecode manipulation and
analysis framework. It extracts the correct class (in this case, 

) and the correct method (
) and serializes all this information together

with the parameters into a small JSON object:

This information, together with some extra information about the
job itself, is all serialized via the  to your
choice of datastore (such as a SQL or NoSQL database). One or
more  monitor the 

 and take jobs from it.

Since the  use optimistic locking,
each job will be processed only once and all the 

 will share the load. This works out
great on Kubernetes, where you can scale horizontally to have
all jobs processed faster by just bringing up more instances of
your application.

Scheduling jobs in the future. You can schedule future jobs
with the  method:

 

Scheduling recurring jobs. If you want recurrent jobs, use the 
 method:

Annotating with @Job. To control all aspects of a job, annotate
the service method with the  annotation, as shown below.
This allows you to set the display name in the dashboard and
configure the number of retries in case a job fails.

jobScheduler.enqueue(() ->jobScheduler.enqueue(() ->

sampleJobService.executeSampleJob("somesampleJobService.executeSampleJob("some

string"));string"));

SampleJobServiceSampleJobService

executeSampleJobexecuteSampleJob

{{  
  "lambdaType": "org.jobrunr.jobs.lambdas.Job  "lambdaType": "org.jobrunr.jobs.lambdas.Job
  "className": "com.example.services.SampleJo  "className": "com.example.services.SampleJo
  "methodName": "executeSampleJob",  "methodName": "executeSampleJob",  
  "jobParameters": [  "jobParameters": [  
    {    {  
      "className": "java.lang.String",      "className": "java.lang.String",  
      "object": "some string"      "object": "some string"  
    }    }  
  ]  ]  
}}

StorageProviderStorageProvider

BackgroundJobServersBackgroundJobServers

StorageProviderStorageProvider

BackgroundJobServersBackgroundJobServers

BackgroundJobServersBackgroundJobServers

scheduleschedule

jobScheduler.schedule(() ->jobScheduler.schedule(() ->

sampleJobService.executeSampleJob(),sampleJobService.executeSampleJob(),

LocalDateTime.now().plusHours(5));LocalDateTime.now().plusHours(5));

scheduleRecurrentlyscheduleRecurrently

jobScheduler.scheduleRecurrently(() ->jobScheduler.scheduleRecurrently(() ->

sampleJobService.executeSampleJob(),sampleJobService.executeSampleJob(),

Cron.hourly());Cron.hourly());

@Job@Job

https://asm.ow2.io/


You can even use variables that are passed to the job in the
display name by means of the  syntax. If
you have very specific use cases where it’s necessary to retry a
specific job only upon a certain exception, you can write an 

 that has access to the job and full control
over how to proceed.

The JobRunr dashboard

JobRunr comes with a built-in dashboard that allows you to
monitor jobs. If you visit http://localhost:8000, you can inspect all
the jobs, including recurrent jobs, as shown in Figure 1.

Figure 1. The JobRunr dashboard

Bad things sometimes happen. Maybe an SSL certificate expired
or a disk is full. JobRunr, by default, will reschedule the
background job with an exponential back-off policy. If the
background job continues to fail 10 times, only then will the job
go to the Failed state.

You can then decide whether to requeue the failed job from the
dashboard when the root cause has been solved. All of this is
visible in the dashboard, including each retry with the exact error
message and the complete stack trace of why a job failed, as
shown in Figure 2.

@Job(name = "The sample job with variable %0"@Job(name = "The sample job with variable %0"
public void executeSampleJob(String variable)public void executeSampleJob(String variable)
    ...    ...  
}}

String.format()String.format()

ElectStateFilterElectStateFilter



Guest Author

Share this Page

   

Figure 2. Details about a job

Conclusion

In this article, I described how to build a basic scheduler using
JobRunr with the . The key
takeaway from this tutorial is that you can create a job with just
one line of code and without any XML-based configuration or the
need to implement an interface.

The complete source code for the example is available on
GitHub.

Dig deeper

jobrunr-spring-boot-starterjobrunr-spring-boot-starter

The JobRunr library

Sample code used in this article

Java tutorials: Lambda expressions

Behind the scenes: How do lambda expressions really
work in Java?




Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/guest-contributor
https://blogs.oracle.com/javamagazine/guest-contributor
https://github.com/jobrunr/example-java-mag
https://www.jobrunr.io/en/
https://github.com/jobrunr/example-java-mag
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://blogs.oracle.com/javamagazine/behind-the-scenes-how-do-lambda-expressions-really-work-in-java
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

