
DEBUGGING JVM INTERNALS

Creating Your Own Debugging Tools
JDK serviceability technologies allow you
into the JVM to solve difficult debugging
problems.
by Andrei Pangin

Java is more than just a programming language; it is a comprehensive
platform for developing and running application software. One of the most
recognized advantages of the Java platform is the large set of
serviceability and maintainability features that are especially important for
enterprise applications. Besides the numerous built-in tools, there is a lot
of third-party software to assist with troubleshooting.

Every decent IDE for Java has a powerful debugger that supports step-
by-step execution, breakpoints, watches, and so on. To address
performance issues, there are well-known profilers such as Oracle Java
Mission Control, JProfiler, and YourKit. Memory leaks are another
prevalent problem. There are appropriate tools to deal with memory
issues, too—for example, VisualVM and Eclipse Memory Analyzer.
General-purpose tools are good for solving typical problems developers
often face. However, they do not always fit uncommon situations. I
believe most of you know how to use standard tools, so here I discuss
how to create new tools customized for your specific cases.

Why Build a Custom Tool?

Imagine a situation in which something has gone wrong with an
application on a production server while you are out of the office. It would
be helpful to take a heap dump for analysis, but the internet connection
might not be good enough to download a multigigabyte dump file. The
only thing you can do is run something small remotely. But what tool
would you run? Sometimes it is faster to make a specialized tool by
yourself rather than search for an existing one that might or might not
help in a particular case.

Another instance where a custom tool can be effective is with the
problem of ignored exceptions. It is a common mistake to catch declared
exceptions and discard them without handling them. The problem is
worse when this happens in a third-party library that you cannot modify. I
encountered this bug in a proprietary JDBC driver that did not handle an
unexpected error from a database server and, thus, could not properly
invalidate a stale connection. Even when you have no control over
exceptions in a third-party library, you can still intercept them with a
specialized tool. I show how to do that in this article.

If you ever wanted to patch a running application without creating a
service interruption, you might be interested in a tool capable of
modifying loaded code. Of course, there are commercial solutions that
can do the job, but why not fix the problem yourself with just a few lines
of code?

The list of tasks that might benefit from a custom tool is endless. Thanks
to serviceability components included in Java SE Development Kit (JDK),
the creation of such tools is much easier. While each of these

Creating Your Own Debugging Tools

Why Build a Custom Tool?

jvmstat Performance Counters

Dynamic Attach and Instrumentation
API

Serviceability Agent

JVM Tool Interface

Changes in JDK 9

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/debugging-2
https://blogs.oracle.com/javamagazine/jvm-internals
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

components deserves a separate article, the following overview sheds
light on what these technologies can do.

jvmstat Performance Counters

Monitoring the JVM is one of the key approaches to ensure that a system
works well. Java HotSpot VM provides a huge amount of telemetry data
through jvmstat performance counters. This data includes several
hundred indicators covering nearly all JVM areas: class loading, garbage
collection, multithreading, just-in-time compilation, and more. Despite the
name, the tools are not all actually counters, and not all of them are
about performance; nevertheless, they are very useful for monitoring
JVM health. You might think of performance counters as gauges and
dials in the cockpit of an aircraft.

jvmstat counters are available at no cost; that is, Java HotSpot VM
exports them anyway, whether you read them or not. The JVM publishes
the telemetry data onto the file system as a memory-mapped file in a
temporary directory, often called /tmp/hsperfdata_{user}/{pid}, where {pid}
is a Java process ID. This naming convention makes it possible for tools
to find running Java processes in the system.

You can ask the JVM to dump a Java heap, print stack traces, change
certain VM flags, load an agent library, and so on.

Fortunately, there is no need to replicate the directory scanning logic,
because there is already a convenient Java API for that. Although the
jvmstat API is not standard, it is supplied with the standard JDK bundle.
You only need to include {JAVA_HOME} in the
classpath.

Here is how to get the process IDs of all running Java HotSpot VMs in
the system:

In this code, stands for the local host. It is also possible to monitor
remote virtual machines if a remote host runs the utility. Once
you have a process ID, you can obtain an instance of and
read its jvmstat counters (or monitors). The type can be
Integer, Long, or String. For example, a monitor named

 contains the main class and the arguments
used to start the given Java application. To get all the monitors matching
the specified regular expression, use the method, as
shown next:

That simple code lists all available monitors with their values. In its
output, you can find interesting metrics that are hardly shown by standard
tools. For example:

/lib/tools.jar

import sun.jvmstat.monitor.MonitoredHost;import sun.jvmstat.monitor.MonitoredHost;
......
MonitoredHost host =MonitoredHost host =
 MonitoredHost.getMonitoredHost((String) null); MonitoredHost.getMonitoredHost((String) null);

Set<Integer> processIds = host.activeVms();Set<Integer> processIds = host.activeVms();

nullnull

jstatdjstatd

MonitoredVmMonitoredVm

MonitorMonitor

sun.rt.javaCommand

findByPatternfindByPattern

MonitoredVm vm = host.getMonitoredVm(MonitoredVm vm = host.getMonitoredVm(
 new VmIdentifier(processId.toString())); new VmIdentifier(processId.toString()));

vm.findByPattern(".*").forEach(monitor -> {vm.findByPattern(".*").forEach(monitor -> {
 System.out.println(monitor.getName() + " = " + System.out.println(monitor.getName() + " = " +
 monitor.getValue()); monitor.getValue());
});});

// Total time spent in class initializers
sun.cls.classInitTime = 2545394

For instance, safepoint time is critical for low-latency applications,
because it shows how long the application threads were forcibly stopped
by the VM. If you choose to monitor safepoint pauses or any other of the
250+ counters, this is already a good monitoring tool, isn’t it? It could be
further improved to show a dynamic profile collected over time.

Unfortunately, you cannot do much just with read-only counters. Two-way
communication with the JVM requires a different technology.

Dynamic Attach and Instrumentation API

The Dynamic Attach mechanism provides the means to connect to a
running VM and execute one of several predefined commands. You can
ask the JVM to dump a Java heap, print stack traces, change certain VM
flags, load an agent library, and so on. The VM executes commands on
its own, so it must be alive and healthy in order to respond.

The Java API for Dynamic Attach is available in the same tools.jar file.
Note that this is a vendor-specific API applicable only to OpenJDK and
Oracle’s JDK.

Attaching to a running Java process is straightforward; you need to know
only the target process ID (pid) as shown in the following code. (Dynamic
Attach requires no special VM options. It can connect to any local
HotSpot JVM unless it is started with the

 flag.)

This shows how to inject a Java agent into a running VM. A Java agent is
a utility program for instrumenting an application. It should be packed into
a JAR file and contain a class with an method.

The instrumentation API enables Java agents to transform the bytecode
of existing classes. When used together with Dynamic Attach, it enables
you to change the code of a running application, even if the application is
started without any debugging facilities. Here is a simple agent that
installs a new version of :

Remember the limitations of the API: a new version
of a class file cannot add new methods or fields, nor can it remove
existing members. Basically, only method bodies can be changed, but
this is often enough for a hot fix.

The ability to instrument running Java processes makes the Attach API
an important tool for maintenance of enterprise applications. The

// Number of contended synchronizations
sun.rt._sync_ContendedLockAttempts = 55
// Duration of stop-the-world VM pauses
sun.rt.safepointTime = 811588

-XX:+DisableAttachMechanism

import com.sun.tools.attach.VirtualMachine;import com.sun.tools.attach.VirtualMachine;
......
VirtualMachine vm = VirtualMachine.attach(pid);VirtualMachine vm = VirtualMachine.attach(pid);
try {try {
 vm.loadAgent(agentJarPath, options); vm.loadAgent(agentJarPath, options);
} finally {} finally {
 vm.detach(); vm.detach();
}}

agentmainagentmain

MyClassMyClass

public static void agentmain(String args,public static void agentmain(String args,
 Instrumentation instr) throws Exception Instrumentation instr) throws Exception

 Class oldClass = Class.forName("org.pkg.MyClass" Class oldClass = Class.forName("org.pkg.MyClass"
 Path newFile = Paths.get("/path/to/MyClass.class Path newFile = Paths.get("/path/to/MyClass.class
 byte[] newData = Files.readAllBytes(newFile); byte[] newData = Files.readAllBytes(newFile);

 instr.redefineClasses(instr.redefineClasses(
 new ClassDefinition(oldClass, newData)) new ClassDefinition(oldClass, newData))
}}

redefineClassesredefineClasses

http://docs.oracle.com/javase/8/docs/jdk/api/attach/spec/index.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/Instrumentation.html

Dynamic Attach mechanism requires full cooperation from the JVM. It
becomes useless if the JVM has hung or become too busy. When this
happens, it is time to call for brute force, such as the serviceability agent.

Serviceability Agent

The HotSpot Serviceability Agent (SA) provides a low-level view of a
Java process from a VM perspective. It knows everything about Java
HotSpot VM internal structures, including the heap layout, the system
dictionaries, the compiled code, the threads, and the stacks. Moreover,
this information is available through a clear and simple Java API, so
developers can benefit from it without having experience in
disassemblers and other hacker facilities.

The SA was originally invented by Java HotSpot VM engineers for
debugging crashes inside the JDK. However, they later realized that it
could be helpful for a wider group of developers, and now it is bundled
with the regular JDK. Start using the SA by including {JAVA_HOME}

 in the classpath, but remember that the API is not
standard and is subject to change in any future JDK release.

Custom tools typically extend an existing class, which is already
capable of parsing arguments and attaching to a running VM. You just
need to implement custom logic inside the overridden method.

 is the starting point to access Java HotSpot VM internal
structures. The next example employs to traverse
all loaded classes with their class loaders. A similar technique might be
useful in detecting memory leaks related to class loading.

That was rather simple. The real power of the SA is to restore VM
structures, either from the memory of a live Java process or from the core
dump of an abnormally terminated process when the operating system is
configured to create such dumps. The SA provides the reflection-like API
to inspect Java objects and to extract the required fields. Unlike the
reflection, which works from within the same process, the SA reads
memory of a different process or parses a core dump file. Tools based on
this feature can do impressive tricks such as stealing private keys from a
running web server. The following code scans the heap of a target
process looking for the instances of and
printing their contents.

/lib/sa-jdi.jar

ToolTool

runrun

import sun.jvm.hotspot.runtime.VM;import sun.jvm.hotspot.runtime.VM;
import sun.jvm.hotspot.tools.Tool;import sun.jvm.hotspot.tools.Tool;

public class MyTool extends Tool {public class MyTool extends Tool {

 @Override @Override
 public void run() { public void run() {
 // Actual implementation // Actual implementation
 VM.getVM()... VM.getVM()...
 } }

 public static void main(String[] args) { public static void main(String[] args) {
 new MyTool().execute(args); new MyTool().execute(args);
 } }
}}

VM.getVM()VM.getVM()

SystemDictionarySystemDictionary

VM.getVM().getSystemDictionary()VM.getVM().getSystemDictionary()
 .classesDo((klass, loader) -> { .classesDo((klass, loader) -> {
 String className = klass.getName().asString(); String className = klass.getName().asString();
 System.out.print(className); System.out.print(className);

 String loaderName = (loader == null) String loaderName = (loader == null)
 ? "Bootstrap ClassLoader" ? "Bootstrap ClassLoader"
 : loader.getKlass().getName().asString(: loader.getKlass().getName().asString(
 System.out.println(" loaded by " + loaderName); System.out.println(" loaded by " + loaderName);
});});

java.security.PrivateKey

The SA needs no cooperation from the target JVM, and there is no way
to protect against SA interactions. This is not a reason to worry, though.
The SA typically requires root privileges to attach to a running process.
Also, keep in mind that the target JVM remains suspended while the SA
is attached.

So far, I have focused on JDK internal APIs. If you are looking for a more
standard way to build your own tool, consider using the JVM tool
interface.

JVM Tool Interface

The JVM tool interface (JVM TI) is a standard programming interface
designed especially for debugging, monitoring, and profiling software
intended to run on top of the JVM. The best thing about JVM TI is its
public specification, which is not tied to any particular implementation. It
is not required that every JVM provide all JVM TI functionality; however,
most popular JVMs do.

The JVM tool interface (JVM TI) is a standard programming interface
designed especially for debugging, monitoring, and profiling software
intended to run on top of the JVM.

The interface is exposed through the С header file . JVM TI–
based tools, called agents, are typically written in C or C++. They run
within the same process and communicate with the JVM directly by
calling JVM TI functions. The interface looks somewhat similar to Java
Native Interface (JNI), so if you have ever written JNI code, you will easily
grasp the principles of using JVM TI.

An agent may start at JVM bootstrap (when specified in or
 JVM arguments), or it can be loaded later at runtime using

the Dynamic Attach mechanism. To support these options, an agent
should define one or several entry points:

The first thing an agent typically does is get the reference to the JVM TI
environment (), which is necessary for calling JVM TI
functions.

Klass keyClass = VM.getVM().getSystemDictionary()Klass keyClass = VM.getVM().getSystemDictionary()
 .find("java/security/PrivateKey", null, null .find("java/security/PrivateKey", null, null

VM.getVM().getObjectHeap()VM.getVM().getObjectHeap()
 .iterateObjectsOfKlass(new DefaultHeapVisitor .iterateObjectsOfKlass(new DefaultHeapVisitor
 @Override @Override
 public boolean doObj(Oop obj) { public boolean doObj(Oop obj) {
 InstanceKlass c = (InstanceKlass) obj.getKlass InstanceKlass c = (InstanceKlass) obj.getKlass
 OopField f = (OopField) c.findField("key", "[B OopField f = (OopField) c.findField("key", "[B
 TypeArray key = (TypeArray) f.getValue(obj); TypeArray key = (TypeArray) f.getValue(obj);
 key.printOn(System.out); key.printOn(System.out);
 return false; return false;
 } }
}, keyClass);}, keyClass);

jvmti.h

-agentlib

-agentpath

, which is called automatically by the JVM early at
startup time

Agent_OnLoad

, which is called whenever the library is loaded
at runtime

Agent_OnAttach

jvmtiEnvjvmtiEnv

#include <jvmti.h>#include <jvmti.h>

JNIEXPORT jint JNICALL JNIEXPORT jint JNICALL
Agent_OnLoad(JavaVM *vm, char *args, void *unused) {Agent_OnLoad(JavaVM *vm, char *args, void *unused) {
 jvmtiEnv *jvmti; jvmtiEnv *jvmti;
 vm->GetEnv((void**)&jvmti, JVMTI_VERSION_1_0); vm->GetEnv((void**)&jvmti, JVMTI_VERSION_1_0);

 // Initialization code // Initialization code

http://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html

JVM TI has functions for everything debuggers usually do. You can
manage threads, walk through their stacks, iterate through the Java
heap, query local variables, set breakpoints, manipulate Java classes,
intercept native methods, and do many other things. Besides that, an
agent may subscribe to event notifications: the JVM will invoke a
provided callback function whenever an event occurs.

The access to JVM TI functionality is capability-based; that is, an agent
must explicitly request the capabilities it is going to use. Most of the
capabilities are available at runtime, but some can be requested only
during the phase (the time when no classes have been loaded
and no bytecodes have been executed). For example, the

 capability is available only at startup,
because the JVM needs to disable certain optimizations beforehand in
order to retain information about all local variables.

The following example requests a capability to generate exception events
and sets up the callback to receive notifications about all thrown Java
exceptions, both caught and uncaught.

The callback function receives all details about an exception: a thread, a
method, and the bytecode index for the thrown exception. The callback
also has a reference to the JNI environment. This means you can invoke
any JNI function from within. For instance, you can use JNI to call

. Thus, an agent will print all the
exceptions, including ignored exceptions, just before they are caught.

You can do a lot more useful things with the JVM TI. Besides exceptions,
it is possible to trace class loading, garbage collection, lock contention,
thread activity, and more.

JVM TI is often confused with the Java debugger agent. There is a
popular misconception that JVM TI compromises security and degrades
the performance of Java applications. However, the Java Debug Wire
Protocol (JDWP) agent is just one example of a JVM TI–based tool; the
technology itself does not imply security or performance consequences.
Whether an application will suffer from agent overhead solely depends on
what the agent does and which capabilities it requests. Consider JVM TI
as a sort of extension to JNI. This technology is definitely worth trying.

Changes in JDK 9

 return 0; return 0;
}}

OnLoad

can_access_local_variables

jvmtiCapabilities capabilities = {0};jvmtiCapabilities capabilities = {0};
capabilities.can_generate_exception_events = 1;capabilities.can_generate_exception_events = 1;
jvmti->AddCapabilities(&capabilities);jvmti->AddCapabilities(&capabilities);

jvmtiEventCallbacks cb = {0};jvmtiEventCallbacks cb = {0};
cb.Exception = ExceptionCallback;cb.Exception = ExceptionCallback;

jvmti->SetEventCallbacks(&cb, sizeof(cb));jvmti->SetEventCallbacks(&cb, sizeof(cb));
jvmti->SetEventNotificationMode(jvmti->SetEventNotificationMode(
JVMTI_ENABLE, JVMTI_EVENT_EXCEPTION, NULL);JVMTI_ENABLE, JVMTI_EVENT_EXCEPTION, NULL);

Throwable.printStackTrace()Throwable.printStackTrace()

void JNICALL ExceptionCallback(void JNICALL ExceptionCallback(
 jvmtiEnv *jvmti, JNIEnv *env, jthread thread jvmtiEnv *jvmti, JNIEnv *env, jthread thread
 jmethodID method, jlocation location, jmethodID method, jlocation location,
 jobject exception, jmethodID catch_method, jobject exception, jmethodID catch_method,
 jlocation catch_location) jlocation catch_location)
{ {
 jclass cls = env->FindClass("java/lang/Throwable jclass cls = env->FindClass("java/lang/Throwable
 jmethodID print_method = env-> jmethodID print_method = env->
 GetMethodID(cls, "printStackTrace", "()V"); GetMethodID(cls, "printStackTrace", "()V");
 env->CallVoidMethod(exception, print_method); env->CallVoidMethod(exception, print_method);
}}

Andrei Pangin
Andrei Pangin (@AndreiPangin) leads the
development of the Odnoklassniki social network.
He previously worked on the HotSpot JVM, which
became his favorite topic and area of expertise.
Pangin is a frequent speaker at Java conferences
and one of the top JVM answerers on Stack
Overflow.

Share this Page

All the technologies discussed previously, including private APIs, will
remain functional in the upcoming JDK 9. However, the new module
system imposes certain restrictions on how you can access these APIs.
No longer will tools.jar and sa-jdi.jar be separate libraries. JDK 9
serviceability features are supplied in the dedicated modules. Table 1
shows the location of key JAR files in Java 9.

Table 1. The location of serviceability APIs in Java 9

By default, applications cannot access an API from the modules that do
not export packages externally. In order to use the private APIs, you need
to explicitly break the encapsulation with the JVM
command-line argument. For example, to run a tool that depends on the
sun.jvmstat.monitor package, use:

[The previous line should be written as a single line with no space after
the = sign.—Ed.]

Feel free to use the private APIs for your own purposes, but do it with
care: there are no guarantees that the APIs will continue to work in future
JDK updates.

Conclusion

The Java platform comes with a set of versatile technologies for building
custom debugging, monitoring, and troubleshooting tools. Some of them
are covered by Java SE standards, while others are specific to OpenJDK
and Oracle’s JDK. Despite the lack of thorough documentation on private
APIs, the source code of the OpenJDK project (particularly, the source
code of JDK built-in tools) might serve as a good starting point for
learning serviceability technologies.

Software development and maintenance can hardly succeed without
proper tools. Although many tools exist in the market, there is no silver
bullet to address all problems. As a Java developer, you can create your
own tools to solve tasks that no other software solves. JDK serviceability
technologies are your friends.

This article was originally published in the January/February 2017 issue of Java Magazine.

--add-exports

java --add-exports jdk.jvmstat/sun.jvmstat.monitor=
 ALL-UNNAMED MyTool



https://blogs.oracle.com/javamagazine/andrei-pangin
https://blogs.oracle.com/javamagazine/andrei-pangin

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

