
FRAMEWORKS

Javalin: A Simple, Modern Web
Server Framework
Building web apps with a fast, lightweight,
unopinionated framework that creates tiny
executables
by David Åse

Javalin is a very lightweight web framework for Java 8 (and later) and
Kotlin. It supports modern features such as HTTP/2, WebSocket, and
asynchronous requests. Javalin is servlet-based, and its main goals are
simplicity, a great developer experience, and first-class interoperability
between Java and Kotlin.

In this article, I explain what Javalin is and how easily it enables you to
write web applications quickly. You’ll need some experience with the
basics of web applications to follow along.

Many developers would say Javalin is a library rather than a framework.
This is because in Javalin, unlike in most frameworks, you never extend
anything; it sets no requirements for your application structure; and there
are no annotations, no reflection, and no other magic—just code. The
“Hello World” example is just four lines and an statement:

This snippet creates a new Javalin instance and starts it on port 7000. It
then attaches a that is triggered by GET requests to the root
path. You can build and package this application as a JAR file. If you use
Maven, just add this to your build:

Run the output JAR file like any other Java program (
).

Getting Started

All Javalin programs require the creation of a Javalin instance (
), which creates a web server to which you can

attach objects. The interface has a single method,
, which is void and takes a as its only parameter. This

 contains everything you need for operating on the HTTP
request and response.

importimport

import io.javalin.Javalin;import io.javalin.Javalin;

public static void main(String[] args) {public static void main(String[] args) {
 Javalin app = Javalin.create().start(7000); Javalin app = Javalin.create().start(7000);
 app.get("/", ctx -> ctx.result("Hello World")); app.get("/", ctx -> ctx.result("Hello World"));
}}

HandlerHandler

<dependency>
 <groupId>io.javalin</groupId>
 <artifactId>javalin</artifactId>
 <version>2.5.0</version>
</dependency>

java -jar myjar.jar

Javalin.create()Javalin.create()

HandlerHandler HandlerHandler

handlehandle ContextContext

ContextContext

Javalin: A Simple, Modern Web
Server Framework

Getting Started

Advanced Concepts

When to Use Javalin

Conclusion

Also in This Issue

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/frameworks
https://javalin.io/
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

A is attached to the instance with a verb and a path:

Responses are set on the instance () through the
 method. As mentioned previously, the

contains all the methods required to deal with both requests and
responses.

You could also write the previous code snippet by creating a class that
implements :

Then, you need to add an instance of to the
instance:

Although it’s possible to write Javalin applications this way, it’s
recommended that you use lambda syntax instead. If you need to split up
your code, the best approach is to create method references:

This approach makes it easier to group common functionality and puts
fewer restrictions on how you build your application. I’ll present more
information on handlers later in this article. Now let’s look at how to
handle common operations with Javalin.

JSON responses. A common use case for Javalin is to serve a JSON
object. This can be done easily by calling :

This code transforms to JSON by using Javalin’s JSON plugin
and sets the content type of the response to . The
JSON plugin is fully configurable, so any JSON library can be used with
Javalin—be it Jackson, Gson, or another choice.

Note that Javalin defines two interfaces for mapping to and from JSON
and includes a Jackson implementation for both of these interfaces. But
you’re free to provide your own implementation to replace the ones that
ship with Javalin.

Handling input. All client input is available through the . You
get parameters from the path, the query string, or the request body. The
request body can contain either the form parameters or a string (usually
JSON). Javalin handles all cases in a consistent way:

@FunctionalInterface@FunctionalInterface
public interface Handler {public interface Handler {
 void handle(Context ctx) throws Exception; void handle(Context ctx) throws Exception;
}}

HandlerHandler JavalinJavalin

app.get("/hello-get", ctx -> ctx.result("Hello GET"app.get("/hello-get", ctx -> ctx.result("Hello GET"

ContextContext ctxctx

ctx.result()ctx.result() ContextContext

HandlerHandler

class MyGetHandler implements Handler {class MyGetHandler implements Handler {
 @Override @Override
 public void handle(Context ctx) { public void handle(Context ctx) {
 ctx.result("Hello GET") ctx.result("Hello GET")
 } }
}}

MyGetHandlerMyGetHandler JavalinJavalin

app.get("/hello-get", new MyGetHandler());app.get("/hello-get", new MyGetHandler());

app.get("/hello-get", helloController::myGetHandlerapp.get("/hello-get", helloController::myGetHandler

ctx.json(myObject)ctx.json(myObject)

app.get("/json", ctx -> ctx.json(myObject));app.get("/json", ctx -> ctx.json(myObject));

myObjectmyObject

application/jsonapplication/json

ContextContext

Getting input as a string is great for quick prototyping and debugging, but
usually you’ll want a specific type of object. For that, you can use the

 class:

In this code, the call to tells Javalin to convert the string
to the specified type or throw an exception. These exceptions are
automatically mapped to standard HTTP responses, and they provide
helpful debug messages to the client. For example, if the query-
param is , the client will be sent the following error:

The class also supports an method that you can
use to validate any type. This enables you to do powerful things, such as
validating two types relative to each other:

If you were to use , Javalin will
ask you to register a converter for that particular class.

Filters and mappers. Sometimes you need to apply the same logic for
multiple endpoints, or you need to handle errors in a consistent way.
These kinds of problems are solved in Javalin by filters and mappers.
Just like HTTP endpoints, the filters in Javalin use the
interface. Filters can be attached to the Javalin instance with or without
specifying a path. For example:

The filters run before endpoint handlers. If you want to prevent
an endpoint handler from doing something in certain cases, you can
throw an exception in a filter. The filter runs after the
endpoint handlers (even after exceptions have been handled).

Exception mappers. It’s common to throw exceptions when writing
controllers for web applications. If a resource is not found, or if a user
isn’t authorized to view a resource, you throw an exception and handle it
elsewhere. Javalin has an exception mapper that lets you map any
exception, and it has a set of premapped exceptions for your
convenience, such as , , and

app.get("/:path-param", ctx -> {app.get("/:path-param", ctx -> {
 String qp = ctx.queryParam("query-param"); String qp = ctx.queryParam("query-param");
 String pp = ctx.pathParam("path-param"); String pp = ctx.pathParam("path-param");
 String fp = ctx.formParam("form-param"); String fp = ctx.formParam("form-param");
 String body = ctx.body(); String body = ctx.body();
 MyObject mo = ctx.bodyAsClass(MyObject.class); MyObject mo = ctx.bodyAsClass(MyObject.class);
});});

ValidatorValidator

int index = ctx.validatedQueryParam("index").asInt(int index = ctx.validatedQueryParam("index").asInt(

getOrThrow()getOrThrow()

indexindex

abcabc

Query parameter 'number' with value 'abc' is not a v

ValidatorValidator asClassasClass

InstantInstant

Instant fromDate = ctx.validatedQueryParam("from")Instant fromDate = ctx.validatedQueryParam("from")
 .asClass(Instant.class) .asClass(Instant.class)
 .getOrThrow(); .getOrThrow();
Instant toDate = ctx.validatedQueryParam("to")Instant toDate = ctx.validatedQueryParam("to")
 .asClass(Instant.class) .asClass(Instant.class)
 .check(to -> to.isAfter(fromDate), "'to' has to .check(to -> to.isAfter(fromDate), "'to' has to
 .getOrThrow(); .getOrThrow();

asClass(UnfamiliarType.class)asClass(UnfamiliarType.class)

HandlerHandler

app.before("/some-path", ctx -> {app.before("/some-path", ctx -> {
 // runs before requests to /some-path // runs before requests to /some-path
});});

app.after(ctx -> {app.after(ctx -> {
 // runs after all requests // runs after all requests
});});

beforebefore

beforebefore afterafter

BadRequestResponseBadRequestResponse NotFoundReponseNotFoundReponse

. Like HTTP endpoint handlers and filters, the
exception mapper has access to the :

WebSocket. Javalin offers a high-level lambda-based WebSocket API:

The object is a and supports the most common
WebSocket events:

The object contains methods for getting path-params and
query-params, as well as methods for sending data to the client.

Configuring the server. Javalin doesn’t require an application to run,
because it runs on top of an embedded Jetty server. Javalin provides
several helpful configuration options, all of which are programmatic (there
are no configuration files). The following snippet shows some of the
options:

If you need more control than what Javalin exposes through its
configuration API, you can supply Javalin with your own Jetty
object:

You can use this option if you want to run Javalin on an HTTP/2 server.
(The code required to set up Jetty to run with HTTP/2 is too long to
include in this article, but there is a working example on GitHub.)

The process is similar for configuring a Jetty , and an
extensive tutorial is available on the Javalin website.

Advanced Concepts

Handler groups. When you build a larger application, you often end up
with routes that share the same path. For example, consider a standard
CRUD API for users:

UnauthorizedResponseUnauthorizedResponse

ContextContext

app.exception(NullPointerException.class, (exceptionapp.exception(NullPointerException.class, (exception
 // handle null pointers here // handle null pointers here
});});

app.ws("/websocket/:path", ws -> {app.ws("/websocket/:path", ws -> {
 ws.onConnect(session -> System.out.println("Conn ws.onConnect(session -> System.out.println("Conn
});});

wsws WsHandlerWsHandler

onConnect(WsSession session)onConnect(WsSession session)
onMessage(WsSession session, String msg)onMessage(WsSession session, String msg)
onMessage(WsSession session, Byte[] msg, int offsetonMessage(WsSession session, Byte[] msg, int offset
onClose(WsSession session, int statusCode, String reonClose(WsSession session, int statusCode, String re
onError(WsSession session, Throwable throwable)onError(WsSession session, Throwable throwable)

WsSessionWsSession

Javalin.create()Javalin.create()
 .contextPath("/context-path") .contextPath("/context-path")
 .enableAutogeneratedEtags() .enableAutogeneratedEtags()
 .enableCorsForOrigin("*") .enableCorsForOrigin("*")
 .enableDebugLogging() .enableDebugLogging()
 .enableStaticFiles("/public") .enableStaticFiles("/public")
 .start(); .start();

ServerServer

app.server(() -> {app.server(() -> {
 Server server = new Server(); //org.eclipse.jett Server server = new Server(); //org.eclipse.jett
 // configure server // configure server
 return server; return server;
});});

SessionHandlerSessionHandler

app.get("/users/", UserController::getAll)app.get("/users/", UserController::getAll)
app.post("/users/", UserController::create)app.post("/users/", UserController::create)

https://javalin.io/documentation#configuration
https://github.com/tipsy/javalin-http2-example
https://javalin.io/tutorials/jetty-session-handling-java

To reduce the amount of noise in these kinds of apps, Javalin has the
concept of handler groups, which define a block scope where the
object is the receiver and thereby allows you to write tighter code:

Handler groups improve readability and significantly reduce the potential
for programming errors. Instead of repeating five times and

 three times, each string is now used only once. This
eliminates the need to extract strings into variables, leaving the code
more readable and less error-prone.

Asynchronous responses. Asynchronous request handling is simple in
Javalin. If you set the result to be a ,
Javalin will remove the request from the thread pool and finish it
asynchronously. This option improves performance by freeing up the
thread pool to deal with new requests instead of waiting for database
calls or HTTP requests to finish. Several libraries return

 in Java, which makes things even simpler. Here
is an example using Java 11 and jasync-sql, a database driver for
MySQL and PostgreSQL:

As you can see, there is no difference between an async handler and a
blocking one, except for the type of object you give to .

Access management. Most production applications eventually need
some sort of access management. Security is not something for which
Javalin is responsible, but the framework does give you the tools to easily
create your own implementation. Every HTTP request in a Javalin
application is run through an . The default
implementation is to allow every request, so developers are responsible
for defining their own security. Consider the following snippet:

Here, the code defines a GET handler for the path and
attaches the role to it. So how do you get Javalin to respect this
role? As with most other concepts in Javalin, is a
functional interface:

app.get("/users/:user-id", UserController::getOne)app.get("/users/:user-id", UserController::getOne)
app.patch("/users/:user-id", UserController::updateapp.patch("/users/:user-id", UserController::update
app.delete("/users/:user-id", UserController::deleteapp.delete("/users/:user-id", UserController::delete

appapp

app.routes {app.routes {
 path("users") { path("users") {
 get(UserController::getAll) get(UserController::getAll)
 post(UserController::create) post(UserController::create)
 path(":user-id") { path(":user-id") {
 get(UserController::getOne) get(UserController::getOne)
 patch(UserController::update) patch(UserController::update)
 delete(UserController::delete) delete(UserController::delete)
 } }
 } }
}}

usersusers

:user-id:user-id

ContextContext CompletableFutureCompletableFuture

CompletableFutureCompletableFuture

app.get("/", ctx -> {app.get("/", ctx -> {
 var futureResult = var futureResult =
 connection.sendPreparedStatement("select 0" connection.sendPreparedStatement("select 0"
 .thenApply(...) .thenApply(...)
 ctx.result(futureResult); ctx.result(futureResult);
});});

ctx.result()ctx.result()

AccessManagerAccessManager

get("/secured", ctx -> ctx.result("!"), roles(MY_ROLget("/secured", ctx -> ctx.result("!"), roles(MY_ROL

"/secured""/secured"

MY_ROLEMY_ROLE

AccessManagerAccessManager

app.accessManager((handler, ctx, permittedRoles) -> app.accessManager((handler, ctx, permittedRoles) ->
 handler.handle(ctx); // handle the request handler.handle(ctx); // handle the request
});});

https://javalin.io/documentation#handler-groups
https://github.com/jasync-sql/jasync-sql

David Åse
David Åse is a software engineer at Working Group
Two, a telecommunications startup. He graduated
from the Norwegian University of Science and
Technology with a master’s degree in computer
science in 2014 and immediately joined the open
source project Spark Java. He is now an open
source enthusiast and the creator and maintainer of
two popular open source Java projects: Javalin and
j2html.

The parameter is of type , and it contains
the roles attached to the endpoint. If you have not attached any roles to
your endpoint, you can ignore it. If you do have roles attached to your
endpoint, you can use it to determine whether the user should have
access to the endpoint:

There are no predefined roles in Javalin. The recommended approach is
to create an enum that implements , which is a marker interface—
that is, an empty interface.

When to Use Javalin

Javalin is simple and unopinionated, which makes it a good choice if you
need to get started quickly. Its abstraction layer is thin, which makes it
easy to understand what’s going on under the hood. Javalin also is fast,
serving 1.1 million requests per second (rps) in the October 2018
TechEmpower benchmarks, which is significantly faster than most
heavier frameworks and many lightweight frameworks.

Javalin works well with GraalVM (there’s a tutorial on the website). The
final binary is only 22 MB (everything included) and starts instantly.

The simplicity of Javalin comes at a cost. Because Javalin does only web
applications, developers need to solve database setup, dependency
injection, command-line parsing, and other important aspects of an
application. The Javalin website has numerous tutorials that show how to
approach many of these tasks.

Conclusion

This article presents just a quick overview of Javalin’s functionality. As
you can see, the scope of Javalin is narrow and limited to the web layer.
The codebase is small, and tests make up the majority of it (6,000 out of
10,000 lines of code). If you’re interested in contributing, please visit the
project on GitHub. Otherwise, consider using Javalin for your projects,
both commercial and personal, whenever you need a fast, lightweight
web framework.

Also in This Issue

Building Microservices with Micronaut
Helidon: A Simple Cloud Native Framework
The Proxy Pattern
Loop Unrolling
Quiz Yourself
Size Still Matters
Book Review: Modern Java in Action

permittedRolespermittedRoles Set<role>Set<role>

app.accessManager((handler, ctx, permittedRoles) -> app.accessManager((handler, ctx, permittedRoles) ->
 if (permittedRoles.contains(getUserRole(ctx)) { if (permittedRoles.contains(getUserRole(ctx)) {
 handler.handle(ctx); handler.handle(ctx);
 } else { } else {
 ctx.status(401); ctx.status(401);
 } }
});});

RoleRole

https://blogs.oracle.com/javamagazine/david-%C3%85se
https://blogs.oracle.com/javamagazine/david-%C3%85se
https://bit.ly/2AKnYbZ
https://github.com/tipsy/javalin
https://blogs.oracle.com/javamagazine/building-microservices-with-micronaut
https://blogs.oracle.com/javamagazine/helidon-a-simple-cloud-native-framework
https://blogs.oracle.com/javamagazine/the-proxy-pattern
https://blogs.oracle.com/javamagazine/loop-unrolling
https://blogs.oracle.com/javamagazine/quiz-yourself
https://blogs.oracle.com/javamagazine/size-still-matters
https://blogs.oracle.com/javamagazine/modern-java-in-action

Share this Page

 

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

