
JAKARTA EE

You don’t always need an
application server to run Jakarta
EE applications
Depending on the requirements, you
can do well with Helidon, Piranha, or
Hammock.

by Arjan Tijms

Jakarta EE (formerly Java EE) and the concept of an application
server have been intertwined for so long that it’s generally
thought that Jakarta EE implies an application server. This article
will look at whether that’s still the case—and, if Jakarta EE isn’t
an application server, what is it?

Let’s start with definitions. The various Jakarta EE specifications
use the phrase application server but don’t specifically define it.
The phrase is often used in a way where it would be
interchangeable with terms such as runtime, container, or
platform. For instance, the specification documents from the
following specs mention things like the following:

The Jakarta EE 9 platform specification doesn’t explicitly define
an application server either, but section 2.12.1 does say the
following:

A Jakarta EE Product Provider is the implementor and
supplier of a Jakarta EE product that includes the
component containers, Jakarta EE platform APIs, and
other features defined in this specification. A Jakarta

Jakarta authorization: “The Application server must bundle
or install the PolicyContext class…”



Jakarta messaging: “A ServerSessionPool object is an
object implemented by an application server to provide a
pool of ServerSession objects…”



Jakarta connectors: “This method is called by an
application server (that is capable of lazy connection
association optimization) in order to dissociate a
ManagedConnection…”



You don’t always need an
application server to run
Jakarta EE applications

Pushback against the full-
fledged application server

Modern obsolescence: Docker
and Kubernetes

The Jakarta EE APIs

Project Helidon

Piranha Cloud

Hammock

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/jakarta-ee
https://jakarta.ee/specifications/platform/9/jakarta-platform-spec-9.html#a162
https://jakarta.ee/specifications/authorization/1.5/apidocs/javax/security/jacc/policycontext
https://jakarta.ee/specifications/platform/8/apidocs/javax/jms/serversessionpool
https://jakarta.ee/specifications/platform/8/apidocs/javax/resource/class-use/resourceexception
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

EE Product Provider is typically an application server
vendor, a web server vendor, a database system
vendor, or an operating system vendor. A Jakarta EE
Product Provider must make available the Jakarta EE
APIs to the application components through
containers.

The term container is equivalent to engine, and very early J2EE
documents speak about the “Servlet Engine.”

Thus, the various specification documents do not really specify
what an application server is, and when they do mention it, it’s
basically the same as a container or runtime. In practice, when
someone speaks about an application server, this means
something that includes all of the following:

In addition, an application server may include the following:

Pushback against the full-fledged application server

The application server model has specific advantages when
shrink-wrapped software needs to be deployed into an
organization and integrated with other software running there. In
such situations, for example, an application server can eliminate
the need for users to authenticate themselves with every
application. Instead, the application server might use a central
Lightweight Directory Access Protocol (LDAP) service as its
identity store for employees, allowing applications running on the
application server to share that service.

This model, however, can be less ideal when an organization
develops and operates its own public-facing web applications. In
that case, the application needs to exert more control. For
instance, instead of using the same LDAP service employees
use, the organization’s customers would have a separate

It is separately installed on the server or virtual machine.

It listens to networking ports after it is started (and typically
includes an HTTP server).



It acts as a deployment target for applications (typically in
the form of a well-defined archive), which can be both
deployed and undeployed.



It runs multiple applications at the same time (typically
weakly isolated from each other in some way).



It has facilities for provisioning resources (such as
database connections, messaging queues, and identity
stores) for the application to consume.



It contains a full-stack API and the API’s implementation
for consumption by applications.



A graphical user interface or command-line interface to
administer the application server



Facilities for clustering (so load and data can be distributed
over a network)



registration system and login screen implemented by the
developers.

Here, an application server can be an obstacle because part of
the security would need to be done outside of the application,
often by an IT operations (Ops) team, who may not even know
the application developers.

For example, an application server that hosts production
applications is often shielded from the developer (Dev) team and
is touched by only the Ops team. However, some problems on
the server really belong in the Dev domain because they apply
to in-house application development. This can lead to tickets that
bounce between the Dev and Ops teams as the Dev team tries
to steer the actions that only the Ops team is allowed to perform.
(Note: The DevOps movement is an attempt to solve this long-
standing problem.)

Another issue concerns the installed libraries within the
application server. The exact versions of these the libraries, and
the potential need to patch or update them, is often a Dev
concern. For instance, the Ops team manages routers,
networks, Linux servers, and so on and that team might not be
very aware of the intricate details of Mojarra 2.3.1 versus
Mojarra 2.3.2 or the need to patch the
implementation.

Modern obsolescence: Docker and Kubernetes

The need for having an installed application server as the prime
mechanism to share physical server resources started to
diminish somewhat with the rise of virtual servers. A decade
ago, you might see teams deploying a single application to a
single dedicated application server running inside a virtual
server. This practice, though, was uncommon enough that in
2013 the well-known Java EE consultant Adam Bien wrote a
dedicated blog post about this practice that received some
pushback. One of the arguments against Bien’s idea was that
running an entire (virtual) operating system for a single
application would waste resources.

Almost exactly at the same time as Bien wrote his post, the
Docker container platform was released. Containers run on a
single operating system and, therefore, largely take the
resource-wasting argument away. While containers themselves
had been around since the 1970s, Docker added a deployment
model and a central repository for container images (Docker
Hub) that exploded in popularity.

With a deployment tool at hand, and the knowledge that fewer
resources are wasted, deploying an application server running a
single application finally went mainstream. Specifically, the
native deployment feature and, above all, the undeployment
feature of an application server are not really used, because
most Docker deployments are static.

FacesServletFacesServlet

https://blogs.oracle.com/javamagazine/how-dev-versus-ops-became-devops
https://adam-bien.com/roller/abien/entry/why_not_one_application_per
https://www.docker.com/
https://hub.docker.com/

In 2015 the Kubernetes container orchestration system
appeared, and it quickly became popular for managing many
instances of (mostly) Docker containers. For Java EE application
servers, Kubernetes means that Java EE’s native clustering
facilities are not really used, because tasks such as load
balancing are now managed by Kubernetes.

Around the same time, the serverless microservices execution
model became more popular with cloud providers. This meant
that the deployment unit didn’t need its own HTTP server.
Instead, the deployment unit contained code that is called by the
serverless server of the cloud provider. The result was that for
such an environment, the built-in HTTP server of a Java EE or
Jakarta EE application server is not needed anymore. Obviously,
such code needs to provide an interface the cloud provider can
call. There’s currently no standard for this, though Oracle is
working with the Cloud Native Computing Foundation on a
specification for this area.

The Jakarta EE APIs

Without deployments, without running multiple applications,
without an HTTP server, and without clustering, a Jakarta EE
application server is essentially reduced to the Jakarta EE APIs.

Interestingly, this is how the Servlet API (the first Java EE API)
began. In its early versions, servlet containers had no notion of a
deployed application archive and they didn’t have a built-in
HTTP server. Instead, servlets were functions that were
individually added to a servlet container, which was then paired
with an existing HTTP server.

Despite some initial resistance from within the Java EE
community, the APIs that touched the managed-container
application server model started to transition to a life outside the
application server. This included HttpServletRequest#login,
which began the move away from the strict container-managed
security model, and @DataSourceDefinition, which allowed an
application to define the same type of data source (and
connection pool) that before could be defined only on the
application server.

In Java EE 8 (released in 2017), application security received a
major overhaul with Jakarta Security, which had an explicit goal
of making security fully configurable without any application
server specifics.

For application servers, several choices are available, such as
Oracle WebLogic Server.

What if you’re not looking for a full application server? Because
there is tremendous value in the Jakarta EE APIs themselves,
several products have sprung up that are not application servers
but that do provide Jakarta EE APIs. Among these products are

https://kubernetes.io/
https://www.cncf.io/
https://docs.oracle.com/javaee/6/tutorial/doc/bnafe.html
https://jakarta.ee/specifications/servlet/5.0/apidocs/jakarta/servlet/http/httpservletrequest#login(java.lang.String,java.lang.String)
https://jakarta.ee/specifications/annotations/2.0/apidocs/jakarta.annotation/jakarta/annotation/sql/datasourcedefinition
https://jakarta.ee/specifications/security/2.0/jakarta-security-spec-2.0
https://www.oracle.com/middleware/technologies/weblogic.html

Helidon, Piranha Cloud, and Hammock, which shall be
examined next.

Project Helidon

Project Helidon is an interesting runtime that’s not an application
server. Of the three platforms I’ll examine, it’s the only one fully
suitable for production use today.

Helidon is from Oracle, which is also known for Oracle WebLogic
Server—one of the first application servers out there (going back
all the way to the 1990s) and one that best embodies the
application server concept.

Helidon is a lightweight set of libraries that doesn’t require an
application server. It comes in two variants: Helidon SE and
Helidon MP (MicroProfile).

Helidon SE. Helidon SE does not use any of the Servlet APIs
but instead uses its own lightweight API, which is heavily
inspired by Java functional programming. The following shows a
very minimal example:

Here’s an example that uses a full handler class, which is
somewhat like using a servlet.

In the Helidon native API, many types are functional types (one
abstract method), so despite a class being used for the

 in this example to contrast it to a servlet, a lambda
could have been used. By default, Helidon SE launches an
HTTP server in these examples at a random port, but it can be
configured to use a specific port as well.

WebServer.create(WebServer.create(
 Routing.builder() Routing.builder()
 .get(.get(
 "/hello", "/hello",
 (request, response) -> response.sen (request, response) -> response.sen
 .build()) .build())
 .start(); .start();

WebServer.create(WebServer.create(
 Routing.builder() Routing.builder()
 .register(.register(
 "/hello", "/hello",
 rules -> rules.get("/", new He rules -> rules.get("/", new He
 .build()) .build())
 .start(); .start();

public class HelloHandler implements Handler public class HelloHandler implements Handler
 @Override @Override
 public void accept(ServerRequest req, Ser public void accept(ServerRequest req, Ser
 res.send("Hi"); res.send("Hi");
 } }
}}

HandlerHandler

https://helidon.io/
https://helidon.io/docs/latest/#/se/introduction/01_introduction
https://helidon.io/docs/latest/#/mp/introduction/01_introduction

Helidon MP. With Helidon MP, you declare a dependency to
Helidon in the file and add it to the Helidon parent
POM. You then write normal MicroProfile/Jakarta EE code (for
the Jakarta EE libraries that Helidon MP supports). After the
build, you get a runnable JAR file including your code. A minimal
example for such a file looks as follows:

This runnable JAR file neither contains nor loads the Helidon
libraries. Instead, those libraries are referenced via

 to be in the folder relative to
where the executable JAR file exists.

After building, such as by using the package, you can run
the generated JAR file using the following command:

pom.xmlpom.xml

pom.xmlpom.xml

<project xmlns="http://maven.apache.org/POM/4<project xmlns="http://maven.apache.org/POM/4
 xmlns:xsi= xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-ins "http://www.w3.org/2001/XMLSchema-ins
 xsi:schemaLocation= xsi:schemaLocation=
 "http://maven.apache.org/POM/4.0.0 ht "http://maven.apache.org/POM/4.0.0 ht
 <modelVersion>4.0.0</modelVersion> <modelVersion>4.0.0</modelVersion>

 <parent> <parent>
 <groupId>io.helidon.applications</gro <groupId>io.helidon.applications</gro
 <artifactId>helidon-mp</artifactId> <artifactId>helidon-mp</artifactId>
 <version>2.2.2</version> <version>2.2.2</version>
 <relativePath /> <relativePath />
 </parent> </parent>

 <groupId>com.example</groupId> <groupId>com.example</groupId>
 <artifactId>example</artifactId> <artifactId>example</artifactId>
 <version>1.0</version> <version>1.0</version>

 <dependencies> <dependencies>
 <dependency> <dependency>
 <groupId>io.helidon.microprofile. <groupId>io.helidon.microprofile.
 <artifactId>helidon-microprofile< <artifactId>helidon-microprofile<
 </dependency> </dependency>
 </dependencies> </dependencies>

 <build> <build>
 <plugins> <plugins>
 <plugin> <plugin>
 <groupId>org.apache.maven.plu <groupId>org.apache.maven.plu
 <artifactId>maven-dependency- <artifactId>maven-dependency-
 <executions> <executions>
 <execution> <execution>
 <id>copy-libs</id> <id>copy-libs</id>
 </execution> </execution>
 </executions> </executions>
 </plugin> </plugin>
 </plugins> </plugins>
 </build> </build>
</project></project>

META-INF/MANIFEST.MFMETA-INF/MANIFEST.MF /libs/libs

mvnmvn

java -jar target/example.jarjava -jar target/example.jar

This command will start the Helidon server, and this time you do
get a default port at 8080. Besides the MicroProfile APIs, which
is what Helidon focuses on primarily, the following Jakarta EE
APIs are supported:

You can read more about Helidon in “Helidon: A simple cloud
native framework,” by Todd Sharp, and “Fast, flexible data
access in Java using the Helidon microservices platform,” by
Paul Parkinson.

Piranha Cloud

Piranha Cloud is a relatively new project; although it started as a
very low-key project a couple of years ago, it didn’t pick up pace
until October 2019, as you can see in Figure 1, which shows the
GitHub commit graph.

Figure 1. The GitHub commit graph for Piranha Cloud

As of mid-April 2021, Piranha was not yet production-ready, and
it is mostly of interest to developers who want to see how a
Jakarta EE and MicroProfile runtime is being built and is
evolving.

Piranha comes in four versions: Nano, Embedded, Micro, and
Server. Each version adds features essentially following the list
mentioned earlier for application server functionality. Figure 2 is
a high-level overview of the Piranha architecture with respect to
the four versions.

Jakarta CDI: Weld

Jakarta JSON-P/B: Yasson

Jakarta REST: Jersey

Jakarta WebSockets: Tyrus

Jakarta Persistence: EclipseLink, Hibernate

Jakarta Transactions: Narayana

https://blogs.oracle.com/javamagazine/helidon-a-simple-cloud-native-framework
https://blogs.oracle.com/javamagazine/fast-flexible-data-access-in-java-using-the-helidon-microservices-platform
https://piranha.cloud/

Figure 2. The Piranha Cloud architecture

Here’s more detail about each version.

Piranha Nano. Piranha Nano essentially runs only a single
servlet on a flat classpath, forgoing several servlet features, for
example, many of the listeners and support for sessions. It’s
therefore specifically suited for serverless computing using a
familiar Servlet API that’s a subset of the full API. This means
servlets created for Piranha Nano will run on other servlet
containers as well, but Nano will not run all regular servlet
applications.

Piranha Nano is programmatically set up, for instance, from a
 method in a regular Java class. Here is a somewhat

contrived Hello World example; running this from a method
will yield “Hello, World!”

main()main()

mainmain

ByteArrayOutputStream outputStream = new ByteByteArrayOutputStream outputStream = new Byte

new NanoPiranhaBuilder()new NanoPiranhaBuilder()
 .servlet("HelloWorldServlet", new HttpSer .servlet("HelloWorldServlet", new HttpSer
 protected void doGet(HttpServletReque protected void doGet(HttpServletReque
 throws IOException, ServletExcept throws IOException, ServletExcept
 response.getWriter().print(“Hello response.getWriter().print(“Hello
 }}) }})
 .build() .build()
 .service(.service(
 new NanoRequestBuilder() new NanoRequestBuilder()
 .method("GET") .method("GET")
 .servletPath("/index.html") .servletPath("/index.html")
 .build(), .build(),
 new NanoResponseBuilder() new NanoResponseBuilder()
 .outputStream(outputStream) .outputStream(outputStream)
 .build() .build()
););

System.out.println(outputStream.toString());System.out.println(outputStream.toString());

As mentioned earlier, Piranha Nano will not run every existing
servlet. It can run Jakarta Server Pages and Apache Wicket
pages.

Piranha Embedded. Like Piranha Nano, Piranha Embedded
runs on a flat classpath and is programmatically set up. It
supports the full Servlet API—well, that’s the goal. As of the time
of this writing, it passes about 92% of the Jakarta EE 9.1 Servlet
TCK (Technology Compatibility Kit).

Piranha Embedded doesn’t start an HTTP server. Requests and
responses can be programmatically created and passed in, but
there are also various convenience methods using default
versions of those. Using the programmatic API, a representation
of a web application archive (WAR) is created, and the API can
create elements such as when needed. No classes or
JAR files need to be added. Because of the flat classpath, those
are directly available to Piranha Embedded from the classpath
used by the code that embeds it.

Because of this, Piranha Embedded can be used in the same
way as a mocking framework for various Jakarta libraries, with
the important difference that it’s testing against an actual
implementation. Here’s an example.

In this example, a resource named with a simple
Facelets message as content is set in the root of a temporary
web application. In addition to this single resource, a

 is set; in this example, it’s
one that initializes Mojarra (a Jakarta Server Faces
implementation). Mojarra itself is on the classpath of this code.

The runs the initializer, causing Mojarra to
start and install the mapped to . No
HTTP server is started. When the code calls the
method for , this results in an

 being created and passed into the

web.xmlweb.xml

System.out.println(System.out.println(
 new EmbeddedPiranhaBuilder() new EmbeddedPiranhaBuilder()
 .stringResource("/index.xhtml", """ .stringResource("/index.xhtml", """
 <!DOCTYPE html> <!DOCTYPE html>

 <html lang="en" xmlns:h="http://x <html lang="en" xmlns:h="http://x
 <h:head> <h:head>
 <title>Hello Jakarta Face <title>Hello Jakarta Face
 </h:head> </h:head>
 <h:body> <h:body>
 Hello Jakarta Faces Hello Jakarta Faces
 </h:body> </h:body>
 </html> </html>
 """) """)
 .initializer(MojarraInitializer.class .initializer(MojarraInitializer.class
 .buildAndStart() .buildAndStart()
 .service("/index.xhtml") .service("/index.xhtml")
 .getResponseAsString()); .getResponseAsString());

index.xhtmlindex.xhtml

ServletContainerInitializerServletContainerInitializer

buildAndStart()buildAndStart()

FacesServletFacesServlet *.xhtml*.xhtml

service()service()

index.xhtmlindex.xhtml

EmbeddedRequestEmbeddedRequest

https://github.com/eclipse-ee4j/mojarra
https://jakarta.ee/specifications/faces/

 code, eventually reaching the
 code. This servlet will then try to find

 via the internal , which will
return the content set via the builder used in the code above.
Mojarra then processes the template and writes the response,
which is the object returned by the method.

If you need more control over the request and even the
response, you can create those objects yourself and pass them
into the service method.

Piranha Micro. Piranha Micro builds on the same core as
Piranha Embedded, but it adds several major components,
including an isolating class loader, the ability to run full WAR
files, an optional HTTP server, the ability to run from the
command line, and an extension mechanism for Jakarta EE and
Jakarta MP components. When no such extension is specified,
Piranha Micro uses a default extension that supports the
following minimal set of Jakarta EE components:

Unlike many other servlet containers, Piranha Micro does not
include a native security implementation on top of which the
Jakarta security APIs are layered. Instead, Jakarta Security
directly provides the implementation for servlet security. This

EmbeddedPiranhaEmbeddedPiranha

FacesServletFacesServlet

index.xhtmlindex.xhtml ServletContextServletContext

service()service()

EmbeddedPiranha piranha =EmbeddedPiranha piranha =
 new EmbeddedPiranhaBuilder() new EmbeddedPiranhaBuilder()
 .stringResource("/index.xhtml", """ .stringResource("/index.xhtml", """
 <!DOCTYPE html> <!DOCTYPE html>

 <html lang="en" xmlns:h="http://xmlns <html lang="en" xmlns:h="http://xmlns
 <h:head> <h:head>
 <title>Hello Jakarta Faces</t <title>Hello Jakarta Faces</t
 </h:head> </h:head>
 <h:body> <h:body>
 Hello Jakarta Faces Hello Jakarta Faces
 </h:body> </h:body>
 </html> </html>
 """) """)
 .initializer(MojarraInitializer.class) .initializer(MojarraInitializer.class)
 .buildAndStart(); .buildAndStart();

EmbeddedRequest request =EmbeddedRequest request =
 new EmbeddedRequestBuilder() new EmbeddedRequestBuilder()
 .contextPath("") .contextPath("")
 .servletPath("/index.html") .servletPath("/index.html")
 .build(); .build();
EmbeddedResponse response = new EmbeddedRespoEmbeddedResponse response = new EmbeddedRespo

piranha.service(request, response);piranha.service(request, response);

Jakarta Servlet (and transitive dependencies of Jakarta
Server Pages and Jakarta Expression Language)



Jakarta Security (and transitive dependencies of Jakarta
Authentication and Jakarta Authorization)



Jakarta CDI (and transitive dependencies for Jakarta DI
and Jakarta Interceptors)



means, for example, that the authentication mechanism
configured in is backed by the same code as the one
configured by

.

For programmatic and embedded usage, Piranha Micro’s
isolating class loader is an important asset. It fully shields the
code running within Piranha Micro from the environment in which
it is embedded. This is very useful for those situations where, for
instance, CDI beans and service loaders from the environment
should not be picked up by the code running within Piranha
Micro. It’s a trade-off, though, because the full isolation makes
any communication between the embedding and embedded
code more difficult. Plus, there’s a potential higher cost in
memory usage.

Piranha Micro uses ShrinkWrap as its native format to handle
WAR files. ShrinkWrap is easy to use to programmatically create
archives of all kinds, and it directly connects to tools such as the
Arquillian microservices test suite, which uses the same archive
format.

Using a builder similar to the one used by Piranha Embedded,
you can mimic the example used above but this time using
Piranha Micro.

This code creates a ShrinkWrap archive containing the same
Facelet as in the previous example, but it also creates an empty

 to trigger the initialization of Jakarta
Server Faces and it includes Mojarra (a Jakarta Server Faces
implementation JAR file) in the archive.

FORMFORM

web.xmlweb.xml

@FormAuthenticationMechanismDefinition@FormAuthenticationMechanismDefinition

System.out.println(new MicroEmbeddedPiranhaBuSystem.out.println(new MicroEmbeddedPiranhaBu
 .archive(.archive(
 ShrinkWrap ShrinkWrap
 .create(WebArchive.class) .create(WebArchive.class)
 .addAsWebResource(new StringAss .addAsWebResource(new StringAss
 <!DOCTYPE html> <!DOCTYPE html>

 <html lang="en" xmlns:h="ht <html lang="en" xmlns:h="ht
 <h:head> <h:head>
 <title>Hello Jakart <title>Hello Jakart
 </h:head> </h:head>
 <h:body> <h:body>
 Hello Jakarta Faces Hello Jakarta Faces
 </h:body> </h:body>
 </html> </html>
 """), "index.xhtml") """), "index.xhtml")
 .addAsWebInfResource(EmptyAsset .addAsWebInfResource(EmptyAsset
 .addAsLibraries(.addAsLibraries(
 Maven.resolver() Maven.resolver()
 .resolve(.resolve(
 "org.glassfish:jak "org.glassfish:jak
 "jakarta.websocket "jakarta.websocket
 .withTransitivity().as .withTransitivity().as
 .buildAndStart() .buildAndStart()
 .service("/index.xhtml") .service("/index.xhtml")
 .getResponseAsString()); .getResponseAsString());

faces-config.xmlfaces-config.xml

https://docs.jboss.org/shrinkwrap/1.0.0-alpha-9/org/jboss/shrinkwrap/api/spec/WebArchive.html
https://arquillian.org/

Using the same ShrinkWrap API, you can load an existing WAR
file from disk, add individual files from disk, add copies of
classes from the classpath, and so on.

For command-line usage, a JAR file named
 is available, which can be used to start a

web application from a file, for example. This version starts an
HTTP server by default. Using it looks as follows:

The default port is 8080, so assuming the archive shown in the
example above was saved to on disk, you would
be able to request the same page using the following:

An interesting aspect of is that it has the
feel of a hollow JAR file (prepackaged runtime with all its
dependencies in one JAR file), but it’s actually a loader. The JAR
file contains its own (shaded) copy of Maven, which it uses to
load the Piranha Micro core classes and dependencies, as well
as any extensions. Furthermore,
contains ShrinkWrap to load a from a file or, in exploded
form, from a directory. Dependency JAR files and the application
archive are loaded and executed from memory, which provides a
particular advantage: Contrary to some hollow JAR solutions, no
unpacking to a temporary folder is needed.

Piranha Server. As its name implies, Piranha Server comes
closest to a traditional application server, although with a twist.

Like a traditional application server, Piranha Server is the only
member of the Piranha family that is installed, that functions as a
deployment target, and that runs multiple applications. But if
those traditional products support a hollow JAR version, that
hollow JAR version is technically speaking (almost) the full
server, with the server facilities just hidden. For Piranha Server,
it’s the other way around.

The Piranha Server variant is a small shell that starts an HTTP
server and instantiates an embedded Piranha Micro instance
(without an HTTP server, obviously) for each deployed
application. Because of the strongly isolating class loader used
by a Piranha Micro instance, each application uses its own
version of the Jakarta EE libraries. This is significantly different
from a traditional Jakarta EE server, where those libraries are
loaded once and shared by every application that is deployed.

Because it loads a fresh set of Jakarta EE libraries for each
application, Piranha Server can support different versions of
Jakarta EE simultaneously, as shown in Figure 3.

piranha-micro.jarpiranha-micro.jar

java -jar piranha-micro.jar --war someapp.warjava -jar piranha-micro.jar --war someapp.war

someapp.warsomeapp.war

wget localhost:8080/index.xhtmlwget localhost:8080/index.xhtml

piranha-micro.jarpiranha-micro.jar

piranha-micro.jarpiranha-micro.jar

.war.war

Figure 3. The architecture of Piranha Server running instances of Piranha

Micro

Piranha Server obviously uses much more memory when
running multiple applications than a traditional application server
would, especially when many applications are deployed (say,
tens or even hundreds). However, it uses fewer resources than
running many servlet runtimes, each with a single application.

By the way, Piranha Server can be configured to use Piranha
Embedded instead of Piranha Micro, thus allowing the
applications to share the Jakarta EE libraries, as shown in
Figure 4. A future variant of Piranha Server will allow you to mix
Piranha Micro and Piranha Embedded applications.

Figure 4. The architecture of Piranha Server running instances of Piranha

Embedded

Hammock

Hammock was one of first runtimes to use the Java EE libraries
without being a full-fledged application server. The Hammock
project was started in 2014 by John Ament as a combination of
RESTEasy (Jakarta REST), Undertow (Jakarta Servlet), and
Weld (Jakarta CDI).

Hammock describes itself as follows:

Hammock is not an application server. It has no
concept of EJB support, it doesn’t support any of the
management extensions or deployment requirements.
It doesn’t run WAR files, it uses uber-jars to have a
simple executable or can be deployed exploded.

https://github.com/hammock-project/hammock/wiki
https://github.com/hammock-project/hammock/wiki/What-Is-Hammock%3F

Hammock thus focuses on the uber-JAR concept, where a
developer adds Hammock as a dependency to a project, and the
build then results in a runnable JAR file that contains both
Hammock and the application code. With Hammock, there is no
concept whatsoever of installing anything, functioning as a
deployment target, or running multiple applications.

Something that sets Hammock aside is that it started to support
alternative implementations for all the Jakarta APIs that it uses
via pluggable Maven dependencies, such as

 for CDI.

Hammock supports the following:

Hammock was among the first products to support the initial
MicroProfile specification (which consisted only of Java EE APIs
then). It added support for later MicroProfile versions by
incorporating Apache components.

Unfortunately, Hammock hasn’t been updated for some time; the
latest release, version 2.1, was published in July 2018.

Conclusion

This article began by exploring exactly what an application
server is, and then it discussed that for those seeking a solid
runtime for Jakarta EE code, full application servers are not
always needed anymore. Indeed, it explained that the Jakarta
EE APIs don’t specifically require an application server at all.

The article also looked at several runtime platforms for Jakarta
EE that are not application servers but which provide many
Jakarta EE APIs. These runtimes show that Jakarta EE is well
positioned to transition to a world that doesn’t need application
servers.

Dig deeper

ws.ament.hammock:bootstrap-weld3ws.ament.hammock:bootstrap-weld3

Jakarta CDI: Weld, OpenWebBeans

Jakarta JSON-P: Johnzon

Jakarta Servlet: Tomcat, Undertow, Jetty

Jakarta REST: CFX, Jersey, RESTEasy

Jakarta Persistence: Hibernate, EclipseLink, OpenJPA

Jakarta Messaging: Artemis

Transition from Java EE to Jakarta EE

Java for the enterprise: What to expect in Jakarta EE 10

How to build applications with the WebSocket API for Java
EE and Jakarta EE



Helidon: A simple cloud native framework

Fast, flexible data access in Java using the Helidon
microservices platform



Arquillian: Easy Jakarta EE testing

https://imagej.net/Uber-JAR#:~:text=An%20uber%2DJAR%E2%80%94also%20known,needing%20any%20other%20Java%20code
https://github.com/hammock-project/hammock/releases/tag/hammock-2.1
https://blogs.oracle.com/javamagazine/transition-from-java-ee-to-jakarta-ee
https://blogs.oracle.com/javamagazine/java-jakartaee-cdi-ejb-jsf-tijms
https://blogs.oracle.com/javamagazine/how-to-build-applications-with-the-websocket-api-for-java-ee-and-jakarta-ee
https://blogs.oracle.com/javamagazine/helidon-a-simple-cloud-native-framework
https://blogs.oracle.com/javamagazine/fast-flexible-data-access-in-java-using-the-helidon-microservices-platform
https://blogs.oracle.com/javamagazine/arquillian-easy-jakarta-ee-testing

Arjan Tijms
Arjan Tijms was a JSF (JSR 372) and
Security API (JSR 375) EG member and is
currently project lead for a number of
Jakarta projects including Jakarta- Security,
Authentication, Authorization, Faces, and
Expression Language. He is the co-creator
of the popular OmniFaces library for JSF
that was a 2015 Duke's Choice Award
winner and is the author of two books: The
Definitive Guide to JSF and Pro CDI 2 in
Java EE 8. Arjan holds an MSc degree in
computer science from the University of
Leiden, The Netherlands. Follow Arjan on
Twitter at @arjan_tijms.

Share this Page

 

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/arjan-tijms
https://blogs.oracle.com/javamagazine/arjan-tijms
https://www.twitter.com/arjan_tijms
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

