
CODING

Understanding Java generics,
Part 2: The hard part
Learn about wildcards, bounded
wildcards, subtyping, and type
erasure.

by Michael Kölling

May 14, 2021

[Java Magazine is pleased to republish this two-part tutorial from
Michael Kölling, published in 2016, about generics. You can read
the first part here. —Ed.]

Welcome back to the discussion of generic types in Java. The
previous article introduced generic types, why they are useful,
what you can do with them, and how to use them. The
introductory part of the topic is quite straightforward, but at the
end of that discussion I mentioned a problem: generic collections
and subtyping.

To recap: I want to write a general method such as
this.

And I want it to print out lists of subtypes of , such as
 or . In other words, given

that is a subtype of , I want to call the method
above like this.

This does not work in Java, because is not
considered a subtype of even though
is a subtype of .

printListprintList

private void printList(List<Person> list)private void printList(List<Person> list)

PersonPerson

List<Student>List<Student> List<Faculty>List<Faculty>

StudentStudent PersonPerson

List<Student> students = getStudentList();List<Student> students = getStudentList();
printList(students);printList(students);

List<Student>List<Student>

List<Person>List<Person> StudentStudent

PersonPerson

Understanding Java generics,
Part 2: The hard part

Wildcards to the rescue

What is known about the
unknown type?

Generic methods

Upper bounds and lower
bounds

Type erasure

No instanceof for types with
type parameters

Java trivia: Arrays and type
safety

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/coding-2
https://blogs.oracle.com/javamagazine/java-generics-tutorial-principals-fundamentals
https://blogs.oracle.com/javamagazine/java-generics-tutorial-principals-fundamentals
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

So, why is not a subtype of ?
If you think only about printing out the list, there seems to be no
problem. The method could call, for instance, a

 method on all the list’s elements (which might be defined
in and redefined appropriately in the subtypes). All
seems well. Right?

The underlying problem becomes apparent when you consider
that the method could include functionality to modify
the list. It could, for example, include the following line:

Because the static type of the variable (the formal
parameter to the method) is , and because

 is a subtype of , adding the object causes no
type problems. However, if the actual list passed to the

 method were a list of students, then I have now
added a object to the list. This is clearly an
error and should not be allowed to happen.

A solution is to declare that is not a subtype of
 and to prevent student lists from being passed

in to the method. Type safety is preserved, but I am
back to square one: How can I now write the general

 method?

Wildcards to the rescue

The solution to this problem is to use wildcards. I can write the
 method like this.

Note the question mark in place of the element type of the list.
The question mark is the wildcard symbol, and it denotes a type
called unknown. The parameter is now a list of unknown type.

There is an obvious benefit to this construct. I can now do what I
intended to do: I can call the method with either

 or as parameters, as
follows:

Every list type is a subtype of the list of this unknown type, so
this code now works. The trade-off is that I cannot add to the list

List<Student>List<Student> List<Person>List<Person>

printListprintList

printprint

PersonPerson

printListprintList

list.add(new Faculty());list.add(new Faculty());

listlist

List<Person>List<Person>

FacultyFaculty PersonPerson

printListprintList

FacultyFaculty StudentStudent

List<Student>List<Student>

List<Person>List<Person>

printListprintList

printListprintList

printListprintList

private void printList(List<?> list)private void printList(List<?> list)

printListprintList

List<Student>List<Student> List<Faculty>List<Faculty>

List<Student> students = getStudentList();List<Student> students = getStudentList();
List<Faculty> professors = getFacultyList();List<Faculty> professors = getFacultyList();
printList(students);printList(students);
printList(professors);printList(professors);

when the element type is unknown, so this avoids the type
problem discussed earlier when I tried to add to the list.

What is known about the unknown type?

The wildcard is a good step forward, but it does not solve all the
problems. You can see this if you think about what I can do with
the list elements now. What if the superclass had a
method that I want to use as part of
the method?

This code will not work. The advantage of using the unknown
type is that you can pass in lists of any type, but you pay
because you don’t know much about that type. All you know, in
fact, is that the type is a subtype of (because every type
is a subtype of). Therefore, I cannot treat the element
type as .

Not knowing much about the element type can still be
acceptable in some cases. I could still use all list operations that
do not depend on the element type, such as and

. I could also do anything that I can do with the
type, such as using the method (perhaps implicitly by
calling).

But to call type-specific methods, I need something else. In
using the wildcard, I went from saying that the parameter is
exactly a List of Person to saying that it is a List of anything.
Instead, I would like to say that it is a List of any subtype of
Person. I can do this with a bounded wildcard.

Generic parameters can have bounds which restrict the kind of
actual types that can be used for them. Consider this next
version of the method.

This definition now allows lists of or subtypes of
 (and only these) as parameters. Because I am using a

wildcard, I am still not allowed to add to the list, but I now know
that all elements are of type (or its subtypes). I can now
treat elements as objects and call the appropriate
methods. This finally solves the problem.

PersonPerson

printAddressDetailsprintAddressDetails

printListprintList

private void printList(List<?> list) {private void printList(List<?> list) {
 for (Person p: list) { for (Person p: list) {

 p.printAddressDetails(); p.printAddressDetails();
 } }
}}

ObjectObject

ObjectObject

PersonPerson

size()size()

clear()clear() ObjectObject

toStringtoString

System.out.printlnSystem.out.println

printListprintList

private void printList(List<? extends Person>private void printList(List<? extends Person>

PersonPerson

PersonPerson

PersonPerson

PersonPerson

Wildcards are not the only place where bounds can be used and
are useful. Type bounds can also be employed in the declaration
of generic types and in methods without wildcards.

For example, I can define a generic type that
accepts only and its subtypes as parameters.

This is similar to the definition of that I showed in
the previous article, but this time only subtypes of can
be used to instantiate the type.

In return, all methods from the type can now be used on
objects of type in the implementation of the
class, because I have a guarantee that any concrete
instantiation of will have these methods.

Generic methods

In the previous examples, the generic type parameter was
introduced in the class header when declaring a generic class. It
is also possible to have single generic methods, without making
the whole class generic. In that case, the single method can
handle generic types. Generic methods are often combined with
bounded generic types. Consider the following example. Here, I
attempt to write a method that prints all elements from a list that
are smaller than a given limit.

The new syntax here is the type parameter in the header
after the keyword and before the return type. I am
assuming that this method is in a class that is not generic, so no
type parameter has previously been declared. To use a generic
type in the parameter list, I need to declare this type first—that is
the effect of writing the type in the header.

This code will fail, however, because the less-than operator
cannot be applied to any unspecified type . Instead, I could use
the method, but this works only when is a subtype

PersonListPersonList

PersonPerson

class PersonList<T extends Person>class PersonList<T extends Person>

ArrayListArrayList

PersonPerson

PersonList<Student> students =PersonList<Student> students =
 new PersonList<Students>(); new PersonList<Students>();
PersonList<Faculty> professors =PersonList<Faculty> professors =
 new PersonList<Faculty>(); new PersonList<Faculty>();

PersonPerson

TT PersonListPersonList

TT

public <T> void underLimit(List<T> myList, T public <T> void underLimit(List<T> myList, T
 for (T e : myList) { for (T e : myList) {
 if (e < limit) if (e < limit)
 System.out.println(e); System.out.println(e);
 } }
}}

<T><T>

publicpublic

<T><T>

TT

compareTocompareTo TT

of . I can enforce that restriction by changing the
method as follows:

Here, I have declared that I accept only types for type that are
subtypes of so that the methods needed are
guaranteed to be available.

Upper bounds and lower bounds

So far, I have discussed bounded types only by showing an
upper bound to establish a supertype (an upper bound) for the
wildcard parameter, as in the following:

The effect is that only the named type or its subtypes can be
used to instantiate the type. In other words, the concrete type at
the point of use must extend (or implement) . If you drew
a typical inheritance hierarchy around , only or
the classes below it in the hierarchy can be used.

I can also restrict the type in the other direction by declaring a
lower bound.

By using the keyword for the declaration, I am stating
that the type has to be or a supertype of . If you
picture this in an inheritance hierarchy, you can see or
the types above it in the hierarchy. This construct is used less
often than upper bounds, but it can be helpful in some situations.

Type erasure

In addition to knowing how to use generic types, it is also useful
to know a little bit about how they are implemented in the Java
compiler and the JVM. If you ever talked with anyone about the
implementation, it is likely that the term type erasure came up at
some stage. It is important to know what this means, because it
affects not only the efficiency of implementation but also the
semantics of your code in certain cases.

ComparableComparable

public <T extends Comparable<T>> void underLipublic <T extends Comparable<T>> void underLi
 List<T> myList, T limit) { List<T> myList, T limit) {
 for (T e : myList) { for (T e : myList) {
 if (e.compareTo(limit) < 0) if (e.compareTo(limit) < 0)
 System.out.println(e); System.out.println(e);
 } }
}}

TT

ComparableComparable

List<? extends Person>List<? extends Person>

PersonPerson

PersonPerson PersonPerson

List<? super Person>List<? super Person>

supersuper

PersonPerson PersonPerson

PersonPerson

At the core of type erasure is the fact that type parameters exist
only at compile time; they are completely removed at runtime.
They are a construct exclusively used for type checking during
compilation to ensure type safety, but they are not carried
through into the Java bytecode.

When learning about generics, it’s often helpful to think of
generic classes as expanded at instantiation time. For example,
consider the following type:

If it is then instantiated by using the concrete type
, it can be thought of as having every

occurrence of in the source text replaced by , so that
the parameter type in the method becomes . For

, each would be replaced by , and
so on.

This is a useful mental model to start understanding generics…
but it is inaccurate. You need to know how generics really work,
because sometimes how they work makes a noticeable
difference.

Java’s generic types are never expanded into their concrete
instantiations: not in source code, not in binary code, not on disk,
and not in memory.

This is different from what happens with templates in C++, for
example, where this expansion actually occurs.

In Java, the generated code will merely insert as the
type for each unbounded type parameter, or the bounding type
for types that have bounds. Thus, ,

, and are all represented by a
single class, , by the time your program
executes. By then, the compiler has made sure that you used
the class in a type-safe manner, and type problems have been
prevented. You used many types but get only one class.

Discarding type parameter information at runtime has
advantages and disadvantages. One of the advantages is that it
saves time and space: The class file needs to exist only once for
every generic class. It does not need to be stored or compiled
multiple times. This is a clear benefit.

On the downside, type erasure makes life harder for tool writers,
such as creators of development environments. It is hard, for
example, for a debugger to figure out the correct type for an
object at runtime if that type is derived from a generic class. No
information is kept in the class file about the full type information.

class List<T> {class List<T> {
 public void add(T elem); public void add(T elem);

}}

List<String>List<String>

TT StringString

addadd StringString

List<Integer>List<Integer> TT IntegerInteger

ObjectObject

List<String>List<String>

List<Integer>List<Integer> List<Person>List<Person>

List<Object>List<Object>

More important for you as a programmer is the fact that type
erasure can influence the behavior of your code. The following
sections describe examples where it is necessary to understand
type erasure to understand the behavior of the Java system.

No instanceof for types with type parameters

The operator cannot be used with parameterized
types. Consider the following attempt to use , as
defined in the previous section:

This code looks entirely reasonable, but if you consult the
previous section on type erasure, you will see that the runtime
system has no idea whether a type is because
it does not keep this information around. (All the runtime knows
about is but nothing more specific.) Therefore,
the runtime cannot perform a type-safe check and give you an
answer. You will see an error saying

.

A similar problem shows up if you use the method.

At first glance, you might think that the condition in the
statement is false, but because of type erasure, the statement
will evaluate to true. As far as the runtime system is concerned,
the class of both objects is .

One of the areas where type erasure becomes most visible in
source code is when you use static attributes in generic classes.
Static methods and static fields are shared between all
instantiations of a generic class. The reason is again the same:
Only one copy of the generic class actually exists. You have to
be aware of this to write correct code. A side effect of this is that
it is not possible to declare a static field of a generic parameter
type.

instanceofinstanceof

List<T>List<T>

if (list instanceof List<Person>) {if (list instanceof List<Person>) {
 List<Person> pl = (List<Person>) list; List<Person> pl = (List<Person>) list;
}}

List<Person>List<Person>

List<Object>List<Object>

illegal generic type for instanceofillegal generic type for instanceof

getClassgetClass

List<Student> sl = new ArrayList<Student>();List<Student> sl = new ArrayList<Student>();
List<Faculty> fl = new ArrayList<Faculty>();List<Faculty> fl = new ArrayList<Faculty>();
if (sl.getClass() == fl.getClass())if (sl.getClass() == fl.getClass())

ifif

ArrayListArrayList

class MyClass<T> {class MyClass<T> {
 private static T value; // error private static T value; // error

}}

Because this field is shared between all variants of the type, it
cannot refer to the type parameter of specific instantiations.

Java trivia: Arrays and type safety

The implementation of arrays in Java has a hole in its type
system. This is one of the rare cases where Java is not statically
type-safe.

Consider this question: If is a subtype of , is a
subtype of ? For lists, the answer is no. Earlier in this
article, I explained why this is and how it could go wrong if you
were to consider a subtype. However, for arrays (a
very similar situation), Java does consider the list to be a
subtype. This introduces a potential type problem. Consider the
following code:

The last line in this example represents a type error: I am trying
to insert an object into an array of . However, the assignment
in the third line is allowed. This problem is picked up only at
runtime, not at compile time, breaking Java’s static type safety.
When designing generic classes, the Java team decided to be
more conservative and detect the equivalent problem at compile
time.

Conclusion

Generic types are easy to understand in principle and generally
quite easy to use. However, when you start writing more
sophisticated code—particularly if you’re writing libraries—you
might run into a whole range of situations where you need to
understand the advanced constructs in generics.

When you put the concepts together, the class and method
definitions can become tricky to read, even for experienced
programmers. Look at the method of class
in the standard library, for example, or the definition of methods
in the class. You will see that it can take some time to get
your head around the combination of all the constructs. Don’t be
discouraged! These complex constructs are rare, and with the
concepts I have discussed here and some practice, you should
be able to work out most of it. More importantly, you should be
able to write correct and flexible code yourself.

Dig deeper

BB AA ListList

List<A>List<A>

ListList

A[] aa;A[] aa;
B[] ba = new B[3];B[] ba = new B[3];
aa = ba; // allowed! B[] is subtype of A[]aa = ba; // allowed! B[] is subtype of A[]
aa[0] = new B();aa[0] = new B();
aa[1] = new A(); // java.lang.ArrayStoreExcepaa[1] = new A(); // java.lang.ArrayStoreExcep

AA BB

maxmax CollectionsCollections

ClassClass

Java tutorial on generics

https://docs.oracle.com/javase/tutorial/java/generics/index.html

Michael Kölling
Michael Kölling is a Java Champion and a
professor at the University of Kent,
England. He has published two Java
textbooks and numerous papers on object
orientation and computing education topics,
and he is the lead developer of BlueJ and
Greenfoot, two educational programming
environments. Kölling is also a
Distinguished Educator of the ACM.

Share this Page

Generics: How they work and why they are important

Java SE documentation for generics

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/michael-k%C3%B6lling
https://blogs.oracle.com/javamagazine/michael-k%C3%B6lling
https://www.oracle.com/technical-resources/articles/java/juneau-generics.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/generics.html
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

