= ORACLE

Menu

Topics v Issues v Downloads v

Java

magazine

How to Test Java Microservices with
Pact

The Pact Framework
Pact in JVM Languages

Conclusion

Search Java Magazine Q

Subscribe

How to Test Java Microservices with
Pact

Microservice applications present special
testing challenges.

by Alex Soto Bueno, Andy Gumbrecht and Jason Porter

April 2, 2020

[This article is based on the “Contract Tests” chapter of the book Testing
Java Microservices by Alex Soto Bueno, Andy Gumbrecht, and Jason
Porter (Manning, 2018). —Ed.]

The microservices architecture involves a lot of intercommunication
between microservices. Those interactions effectively form a contract
between the services: This contract consists of expectations of input and
output data as well as preconditions and postconditions.

A contract is formed for each service that consumes data from another
service that provides (or produces) data based on the first service’s
requirements. If the service that produces data can change over time, it’s
important that the contracts with each service that consumes data from it
continue to meet expectations. Contract tests provide a mechanism to
explicitly verify that a component meets a contract.

Let’s look at the tools you can use to write contract tests and, in
particular, Pact, a family of test frameworks that provide support for
consumer-driven contract testing. It has official implementations for Ruby,
JVM languages, .NET, JavaScript, Go, Python, Objective-C, PHP, and
Swift.

In our opinion, the Pact framework is the most widely adopted and
mature project on the contract-testing scene. One of its main advantages
is its support for almost all major languages used today for writing
microservices. In addition, the same concepts can be reused regardless
of the programming language, from front end to back end. For these
reasons, we strongly believe that Pact is the most generic solution for
writing consumer-driven contracts. It adapts well to microservices
architectures developed in Java.

The Pact Framework

The Pact framework lets you write contracts on the consumer side by
providing a mock HTTP server and a fluent API to define the HTTP
requests made from a consumer to a service provider and the HTTP
responses expected in return. These HTTP requests and responses are
used in the mock HTTP server to mock the service provider. The
interactions are then used to generate the contract between a service
consumer and a service provider.

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/testing-3
https://docs.pact.io/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://www.oracle.com/

Pact also provides the logic for validating the contract against the
provider side. All interactions that occur on the consumer are played back
in the “real” service provider to ensure that the provider produces the
response the consumer expects for given requests. If the provider returns
something unexpected, Pact marks the interaction as a failure, and the
contract test fails.

Any contract test is composed of two parts: one for the consumer and
another for the provider. In addition, a contract file is sent from a
consumer to a provider. Let’s look at the lifecycle of a contract test using
Pact.

Step one. Consumer expectations are set up on a mock HTTP server
using a fluent API. Consumer communication takes place with the mock
HTTP server handling HTTP requests and responses but never
interacting with the provider. This way, the consumer doesn’t need to
know how to deploy a provider (because it might not be trivial to do so
and will probably result in writing end-to-end tests instead of contract
tests). The consumer verifies that its client/gateway code can
communicate against the mock HTTP server with defined interactions.

When consumer tests are run, all interactions are written into a pact
contract file, which defines the contract that the consumer and provider
must follow.

Step two. The pact contract file is sent to the provider project to be
replayed against the provider service. The contract is played back

against the real provider, and real responses from the provider are
checked against the expected responses defined in the contract.

If the consumer is able to produce a pact contract file and the provider
meets all the expectations, the contract has been verified by both parties,
and they will be able to communicate.

These steps are described in Figure 1.

Step 1: Define consumer expectations.

Record /L D

Pact

HTTP request
Consumer Provider

‘HTTP response

Step 2: Verify expectations on the provider.

ﬂReplay

Pact

HTTP request
Consumer Provider

HTTP response

Figure 1. The two steps of the Pact contract-test lifecycle
To summarize, Pact offers the following features:

¢ It provides a mock HTTP server so you don’t have to depend on the
provider.

It provides an HTTP client to automatically replay expectations.

It uses states to communicate the expected state from the

consumer side to the provider before replaying expectations. For
example, an interaction might require that the provider database
contain a user called Alexandra before replaying an expectation.

Pact Broker is a repository for contracts, allowing you to share
pacts between consumers and providers, versioning pact contract
files so the provider can verify itself against a fixed version of a
contract, and providing documentation for each pact as well as a
visualization of the relationship between services.

Next, let’s explore Pact JVM: the implementation of Pact for the Java
Virtual Machine.

Pact in JVM Languages

Pact JVM is partially written in Scala, Groovy, and Java, but it can be
used with any JVM language. It integrates perfectly with Java, Scala,
Groovy, Grails (providing a Groovy DSL for defining contracts), and
Clojure. In addition, it offers tight integration with test frameworks such as
JUnit, Spock, ScalaTest, and Specs2, as well as build tools such as
Maven, Gradle, Leiningen, and sbt. This article focuses on Java tools, but
keep in mind that if you plan to use any other JVM language, you can still
use Pact JVM for consumer-driven contract testing.

Let’s see how to write consumer and provider tests using Pact JVM.

Consumer testing with Pact JVM. Pact JVM provides a mock HTTP
server and a Java DSL for writing the expectations of the mock HTTP
server. These expectations are materialized into pact contract files when
the consumer test passes.

Pact JVM integrates with JUnit, providing a DSL and base classes for
use with JUnit to build consumer tests. The first thing you do to write a
consumer test using JUnit is register the PactProviderRule JUnit rule.
This rule does the following:

¢ Starts and stops the mock HTTP server
* Configures the mock HTTP server with defined expectations

¢ Generates pact contract files from defined expectations if the test
passes

Here’s an example:

@Rule public PactProviderRule mockProvider =
new PactProviderRule("test provider", "localhost", !

The first argument is the name of the provider that the current consumer
contract is defining. This name is used to refer to the provider of a given
contract. Next are two optional parameters: the host where the mock
HTTP server is bound and the listening port. If values aren’t specified,
localhost and 8080 are used, respectively. Finally, the this instance is
the test itself.

Next, you define the expectations by annotating a method with
au.com.dius.pact .consumer.Pact. This method must receive a

class of type PactDs1WithProvider and return a PactFragment.
PactDslWithProvider is a Java class that’s built around a DSL
pattern to provide a description of the request that's expected to be
received when a mock HTTP server is used.

As its name suggests, the PactFragment object is a fragment of a
contract. It’s used as the expectation in the mock HTTP server and also
to generate a pact contract file that’s used to verify the provider. The
fragment may be the complete contract or only part of it. If more than one
fragment is defined in the same test class, the pact contract file consists
of the aggregation of all fragments.

The @pact method must have this signature:

@Pact (provider="test_provider", consumer="test_ consi
public PactFragment createFragment (PactDslWithProwvi«
//...

}

Notice that in the @Pact annotation, you set the name of the provider
that should follow the contract and the name of the consumer that’s
defining the contract. This information is important to ensure the provider-
side test is executed against all consumers for which the provider
provides data.

The next snippet defines a request/response expectation.
PactDslWithProvider has several options you can define:

return builder

.uponReceiving("a request for something")

.path("/hello")

.method("POST")

.body("{\"name\": \"Ada\"}")
.willRespondWith()

.status(200)

.body("{\"hello\": \"Ada\"}")
.uponReceiving("another request for something")

.matchPath("/hello/[0-9]+")

.method ("POST")

.body("{\"name\": \"Ada\"}")
.willRespondWith()

.status(200)

.body("{\"hello\": \"Ada\"}")
.toFragment();

This example above defines two expectations. The first request happens
when the consumer sends a request using the POST method at /hello.
The body of the message must contain exactly the JSON document
{"name": "Ada"}. If this happens, the response is the JSON
document {"hello": "Ada"}. The second request happens when the
path starts with /hello followed by any valid number. The conditions are
the same as for the first request.

Notice that you can define as many interactions as required. Each
interaction starts with uponReceiving and is followed by
willRespondWith to record the response.

By the way, to keep your tests as readable and simple as possible, and to
stay focused on the “one method, one task” approach, we recommend
using several fragments for all interactions, instead of defining one big
@Pact method that returns everything.

One important aspect of the previous definitions is that the body content
is required to be the same as that specified in the contract. For example,
a request for something has a strong requirement that the response be
provided only if the JSON document is { "name": "Ada"}. If the name
is anything other than Ada, the response isn’t generated. The same is
true for the returned body. Because the JSON document is static, the
response is always the same.

This can be a restriction in cases where you can’t set a static value,
especially when it comes to running contracts against the provider. For
this reason, the builder’s body method can accept a PactDs1JsonBody
that can be used to construct a JSON body dynamically.

The PactDslJsonBody class. The PactDs1JsonBody builder class
implements a DSL pattern that you can use to construct a JSON body
dynamically as well as define regular expressions for fields and type
matchers. Let’s look at some examples.

The following snippet generates a simple JSON document without an
array:

DslPart body = new PactDslJsonBody()
.stringType("name")
.booleanType ("happy")

.id()
.ipAddress("localAddress")
.numberValue("age", 100);

Using the xType form, you can also set an optional value parameter
that’s used to generate example values when returning a mock response.
If no example is provided, a random one is generated.

The previous PactDs1JIsonBody definition will match any body like this:

{
"name" : "QWERTY",
"happy": false,
"id" : 1234,
"localAddress" : "127.0.0.1",
"age": 100,
}

Notice that any document containing all the required fields of the required
type and having an age field with the value 100 is valid.

PactDs1lJsonBody also offers methods for defining array matchers. For
example, you can validate that a list has a minimum or maximum size or
that each item in the list matches a given example:

DslPart body = new PactDslJsonBody()
.minArrayLike("products", 1)
.id()
.stringType("name")
.stringMatcher("barcode", "a\\d+", "al234")
.closeObject ()
.closeArray();

In the example above, the products array can’t be empty, and every
product should have an identifier and a name of type string as well as
a barcode that matches the form “a” plus a list of numbers.

If the size of the elements isn’t important, you can do this:

PactDslJsonArray.arrayEachLike()

.date("expireDate", "mm/dd/yyyy", date)
.stringType("name")
.decimalType("amount", 100.0)
.closeObject()

In the example above, each array must contain three fields: expireDate
, name, and amount. Moreover, in the mocked response, each element
will contain a date variable value in the expireDate field, a random
string in the name field, and the value 100.0 in amount.

As you can see, using Ds1Part to generate the body lets you define
field types instead of concrete, specific field/value pairs. This makes
your contract more resilient during contract validation on the provider
side. Suppose you set .body ("{'name': 'Ada'}") inthe provider-
validation phase: You expect the provider to produce the same JSON
document with the same values. This may be correct in most cases; but if
the test data set changes and, instead of returning

.body("{'name': 'Ada'}"), itreturns

.body("{'name': 'Alexandra'}"), the test will fail—although from
the point of view of the contract, both responses are valid.

Now that you’ve seen how to write consumer-driven contracts with Pact
on the consumer side, let’s look at how to write the provider part of the
test.

Provider testing with Pact JVM. After executing the consumer part of
the test and generating and publishing the pact contract file, you need to
play back the contract against a real provider. This part of the test is
executed on the provider side, and Pact offers several tools to do so:

¢ JUnit: A tool that validates contracts in JUnit tests

¢ Gradle, Leiningen, Maven, and sbt: Plugins for verifying contracts
against a running provider

¢ ScalaTest: An extension to validate contracts against a running
provider

* Specs2: An extension to validate contracts against a running
provider

In general, all of these integrations offer two ways to retrieve published
contracts: by using Pact Broker and by specifying a concrete location (a
file or a URL). The way to configure a retrieval method depends on how
you choose to replay contracts. For example, JUnit uses an annotations
approach, whereas in Maven, a plugin’s configuration section is used for
this purpose.

Let’s see how you can implement provider validation using Maven,
Gradle, and JUnit.

Using Maven for verifying contracts. Pact offers a Maven plugin for
verifying contracts against providers. To use it, add the following to the
plugins section of pom. xm1:

<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven 2.1l1</artifac
<version>3.5.0</version>

</plugin>

Then you need to configure the Maven plugin, defining all the providers
you want to validate and the location of the consumer contract that you
want to use to check them:

<plugin>
<groupId>au.com.dius</groupId>
<artifactId>pact-jvm-provider-maven 2.11</artifac
<version>3.2.10</version>
<configuration>
<serviceProviders>
<serviceProvider>
<name>providerl</name>
<protocol>http</protocol>
<host>localhost</host>
<port>8080</port>
<path>/</path>
<pactFileDirectory>path/to/pacts</pactF
</serviceProvider>
</serviceProviders>
</configuration>
</plugin>

To verify contracts, execute mvn pact:verify. The Maven plugin will
load all pact contracts defined in the given directory and replay those that
match the given provider name. If all the contracts validate against the
provider, the build will finish successfully; if not, the build will fail.

Using Gradle for verifying contracts. The Gradle plugin uses an
approach similar to Maven'’s to verify contracts against providers. To use
it, add the following to the plugins section of .build.gradle:

plugins {
id "au.com.dius.pact" version "3.5.0"

}

Then configure the Gradle plugin, defining the providers you want to
validate and the location of the consumer contract you want to use to
check them:

pact {
serviceProviders {
providerl {
protocol = 'http'

host = 'localhost'
port = 8080 path = '/'
hasPactsWith('manyConsumers') {

pactFileLocation = file('path/to/pacts’
}

To verify contracts, execute gradlew pactVerify. The Gradle plugin
will load all Pact contracts defined in the given directory and replay those
that match the given provider name. If all the contracts validate against
the provider, the build will finish successfully; if not, the build will fail.

Finally, let’s see how to validate providers by using JUnit instead of
relying on a build tool.

Using JUnit for verifying contracts. Pact offers a JUnit runner for
verifying contracts against providers. This runner provides an HTTP client
that automatically replays all the contracts against the configured

provider. It also offers convenient out-of-the-box ways to load pacts using
annotations.

Using the JUnit approach, you need to register PactRunner, set the
provider’s name with the @Provider annotation, and set the contract’s
location. Then, you create a field of type
au.com.dius.pact.provider. junit.target.Target that’s
annotated with @TestTarget and instantiates either
au.com.dius.pact.provider.junit .target.HttpTarget to
play pact contract files as HTTP requests and assert the response or
au.com.dius.pact.provider.junit.target.AmgpTarget to
play pact contract files as Advanced Message Queuing Protocol (AMQP)
messages. (AMQP is an application layer protocol for message-oriented
middleware. The features it defines are message orientation, queuing,
routing, reliability, and security.)

Let’s look at an example using HttpTarget, from PactTest. java:

@RunWith (PactRunner.class)
@Provider ("providerl")
@PactFolder ("pacts")
public class ContractTest {
@TestTarget
public final Target target = new HttpTarget("loc

Notice that there’s no test method annotated with @Test. That isn’t
required, because rather than having a single test, there are many tests:
one for each interaction between a consumer and the provider.

When this test is executed, the JUnit runner gets all the contract files
from the pacts directory and replays all the interactions defined in them
against the provider location specified in the HttpTarget instance.

PactRunner automatically loads contracts based on annotations on the
test class. Pact provides three annotations for this purpose:

* PactFolder: This retrieves contracts from a project folder or
resource folder, for example,
@PactFolder("subfolder/in/resource/directory")

® PactUrl: This retrieves contracts from URLs, for example,
@PactUrl(urls =
{"http://myserver/contractl.json"})

* PactBroker: This retrieves contracts from PactBroker, for
example,
@PactBroker (host="pactbroker", port = "80", tags
= {"latest", "dev"})

¢ custom: To implement a custom retriever, create a class that
implements the PactLoader interface and has one default empty
constructor or a constructor with one argument of type Class
(which represents the test class). Annotate the test like this:
@PactSource(CustomPactLoader.class)

You can also easily implement your own method.

Pact states. When you're testing, each interaction should be verified in
isolation, with no context from previous interactions. But with consumer-
driven contracts, sometimes the consumer wants to set up something on
the provider side before the interaction is run, so the provider can send a
response that matches what the consumer expects. A typical scenario is
setting up a data source with expected data. For example, when testing
the contract for an authentication operation, the consumer may require
the provider to insert into a database a concrete login and password
beforehand, so that when the interaction occurs, the provider logic can

react appropriately to the data. Figure 2 summarizes the interaction
between consumers, states, and provider.

N
Contract

POST: { login: John, password: 1234 ———|
State Authentication-> username:John password: 1234

Consumer Replay POST {login: John, password: 1234}

Insert user John with password 1234

Ehl\uthemiwte

Figure 2. The interaction between the consumer, states, and provider

‘°|°|

Provider

First, the consumer side defines that the authentication process should
be done using a POST method containing a JSON body:

{ "login": "John", "password": "1234" }

Because this snippet will be used when replaying the contract against the
provider, the consumer needs to warn the provider that it should prepare
the database with the given information before executing this interaction.
For this reason, the consumer creates a state called State Authentication
with all the required data. The state information is stored in the contract.

When the contract is replayed against the provider, before the interaction
occurs, the state data is injected into the test so the test can prepare the
environment for contract validation. Finally, contract validation is
executed with the database containing the expected user information.

To define the state from the consumer side, you need to use the special
method given when defining the contract:

@override
protected PactFragment createFragment(PactDslWithPr«
Map<String, Object> parameters = new HashMap<>()
parameters.put("login", "John");
parameters.put("password", "1234")
builder
.given("State Authentication", parameters)
.uponReceiving("")

To react to a state on the provider side, you need to create a method
annotated with @state:

@State("State Authentication")

public void testStateMethod(Map<String, Object> par
//Insert data

}

Notice that with states, you can share information between the consumer
and provider, so you can configure the state of the test before interaction.
Pact states are the preferred way to prepare the state of the provider
from the consumer side.

Maven and Gradle integrations also provide methods for setting states on
the provider side. In these cases, for each provider, you specify a state-
change URL to use for changing the state of the provider. This URL
receives the providersState description from the pact contract file
before each interaction, via a POST method.

Conclusion

There are many benefits of using Pact for consumer-driven contract
testing:

Using consumer-driven contracts provides faster execution of tests.

You won’t end up with flaky tests, because with HTTP stub servers,
you always receive reliable responses.

Tests are split between the consumer and provider, so it's easier to
identify the cause of a failure.

Incorporating consumer-driven contracts is a design process.

“Consumer-driven contracts” doesn’t mean “dictator-consumer-
driven contracts.” The contract is the starting point of a collaborative
effort that begins on the consumer side, but both sides must work

on it.

With contract tests, you avoid having to know from the consumer
side how to package and deploy the provider side. The consumer
side needs to know only how to deploy its part. When you validate
the contract on the provider, the provider knows how to deploy itself
and how to mock/stub its own dependencies. This is a huge
difference from end-to-end tests, where you must start a full
environment to be able to run the tests.

A consumer-driven contract may not always be the best approach to
follow. Normally it is, but in some situations, you may want to use
provider-driven contracts or consumer contracts.

Alex Soto Bueno

Alex Soto Bueno is a Software Engineer at Red Hat
in the Developers group. He is passionate about the
Java world and software automation, and he
believes in the open source software model. Alex is
the creator of the NoSQLUnit project, a member of
the JSR 374 (Java API for JSON processing) Expert
Group, the co-author of Testing Java Microservices
for Manning and the Istio Refcard, and a contributor
to several open source projects. A Java champion
since 2017 and international speaker, he has talked
to audiences about new testing techniques for
microservices, continuous delivery in the 21st
century, and Java. Follow him at @alexsotob.

Andy Gumbrecht

Andy Gumbrecht is an Apache TomEE PMC
member, developer and former evangelist at
Tomitribe. Now working as a Software Architect at
Phoenix-Contact in Germany, he is still an active
contributor of Apache projects including
OpenEJB/TomEE and The Arquillian testing
framework. Andy has been using in production
environments and contributing to Apache OpenEJB
and TomEE since 2009. Andy has been fitting in
tight code since getting a Sinclair ZX81 with a
whopping 1K memory back in 1982. Find him on
Twitter @ AndyGeeDe.

Jason Porter

https://blogs.oracle.com/javamagazine/alex-soto-bueno
https://blogs.oracle.com/javamagazine/alex-soto-bueno
https://www.twitter.com/alexsotob
https://blogs.oracle.com/javamagazine/andy-gumbrecht
https://blogs.oracle.com/javamagazine/andy-gumbrecht
https://www.twitter.com/AndyGeeDe
https://blogs.oracle.com/javamagazine/jason-porter

Jason Porter is a software engineer currently
working on the Red Hat Developer Program Team,
Arquillian, Quarkus, and other developer experience
projects within Red Hat. His specialties include
Wildfly, Quarkus, CDI, JSF, Java EE, solr, and
Gradle. He has worked with PHP, Ruby, Groovy,
SASS, the rest of the web language arena (HTML,
CSS, JS). His current position as Senior Software
Engineer at Red Hat has him work primarily on the
developers.redhat.com website, He's very
interested in the developer experience and helping
to improve it at all aspects. Follow him at
@lightguardjp.

Share this Page

Contact About Us Downloads and Trials News and Events
US Sales: +1.800.633.0738 Careers Java for Developers Acquisitions

Global Contacts Communities Java Runtime Download Blogs
Support Directory Company Information Software Downloads Events

Subscribe to Emails Social Responsibility Emails Try Oracle Cloud Newsroom

oracLe | Integrated Cloud

Applications & Platform Services

© Oracle | Site Map | Terms of Use & Privacy | Cookie Preferences | Ad Choiceq

https://blogs.oracle.com/javamagazine/jason-porter
https://www.twitter.com/lightguardjp
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

