
JAVA 16

From the vector API to records
to elastic metaspace, there’s a
lot packed into Java 16
The Java Champions say these are a
few of their favorite things.

by Alan Zeichick

March 12, 2021

What’s the best, most significant feature of the forthcoming Java
16, set for general availability on March 16? There’s so much
packed into this semiannual update, with 17 Java Enhancement
Proposals (JEPs), some of which are previews and incubators.

Everyone, it seems, has a favorite when it comes to the latest
JEPs. Personally, I’m intrigued by JEP 387: Elastic metaspace,
which improves the allocation and deallocation of metaspace
memory in the HotSpot JVM, thereby reducing class-loader
overhead and memory fragmentation. For long-running server-
side applications, this could really improve software
performance.

What do other developers think?

For Java 16, Java Magazine reached out to several Java
Champions, that is, technical luminaries from a broad cross-
section of the Java community. (Candidates for joining the Java
Champions program are nominated and selected by existing
Java Champions themselves through a peer review process.
They don’t work for Oracle and are not chosen by Oracle.)

The question was straightforward: “What’s the most significant
part of JDK 16—to you?” Seven Java Champions replied and
explained their 10 favorite JEPs. Here’s what they said, in their
own words.

JEP 338 (vector API)

By Gunnar Morling, Java Champion

From the vector API to records
to elastic metaspace, there’s a
lot packed into Java 16

JEP 338 (vector API)

JEP 357 (migrate from
Mercurial to Git) and JEP 369
(migrate to GitHub)

JEP 376 (ZGC concurrent
thread-stack processing)

JEP 386 (Alpine Linux port)

JEP 388 (Windows/AArch64
port), JEP 394 (pattern
matching for instanceof), and
JEP 395 (records)

JEP 394 (pattern matching for
instanceof)

JEP 395 (records)

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://openjdk.java.net/projects/jdk/16/
https://blogs.oracle.com/javamagazine/the-role-of-previews-in-java-14-java-15-java-16-and-beyond
https://openjdk.java.net/jeps/387
https://developer.oracle.com/javachampions/
https://twitter.com/gunnarmorling
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

The Java 16 feature I’m most excited
about is the JEP 338: Vector API,
which is now incubating. It really was
about time to update all those ancient
collection types…just kidding, of
course.

The Vector API is about making the
vector calculation capabilities of the x64 and AArch64 CPU
architectures usable for Java developers.

Vectorization allows a CPU to apply the same operation to
multiple input values at once (single instruction, multiple data—
SIMD), resulting in drastic performance improvements, if your
problem lends itself towards such parallel processing.

While the HotSpot JVM’s C2 just-in-time compiler supports
autovectorization of specific scalar operations, the dedicated API
allows developers to benefit from vectorization in many more
cases, providing explicit and fine-grained control over the
executed vector calculations.

I am expecting JEP 338 to open up the door for Java for many
interesting use cases, providing excellent performance in areas
such as image and signal processing, encryption, text
processing, bioinformatics, and many others.

JEP 357 (migrate from Mercurial to Git) and JEP 369
(migrate to GitHub)

By Ian Darwin, Java Champion

While the garbage collector
improvements in Java 16 are most
welcome, as always (thanks, garbage
collection team!), my favorite change
is probably the migration to Git and
GitHub—that’s JEP 357: Migrate from

Mercurial to Git and JEP 369: Migrate to GitHub.

I know I, and I imagine many others, have been hesitant to
contribute to OpenJDK on the grounds of having to learn yet
another single-use tooling. “I’m sure I’ll get around to it one of
these days.”

Git and GitHub are so widely used it’s hard to imagine a
developer with more than a few years’ experience who hasn’t
used one or both. I predict (and hope) that this move will lead to
an uptick in active contributors and help realize the potential that
a long-ago Sun Microsystems infused into OpenJDK as an open
source project.

JEP 376 (ZGC concurrent thread-stack processing)

By Monica Beckwith, Java Champion

https://openjdk.java.net/jeps/338
https://www.oracle.com/technical-resources/articles/java/architect-evans-pt1.html
https://twitter.com/Ian_Darwin
https://openjdk.java.net/jeps/357
https://openjdk.java.net/jeps/369
https://twitter.com/mon_beck

While working with Oracle’s Z
Garbage Collector (ZGC) team to help
enable large pages support on
Windows, I learned about the
concurrent thread-stack processing
JEP that the Oracle ZGC team was
working on: JEP 376. This JEP also
happened to be one of the bigger

JEPs in the candidate state, and then by September 2020, the
JEP targeted JDK 16.

The Z Garbage Collector is one of the newer low-latency
collectors in the HotSpot JVM. The design goal for ZGC is to
provide near real-time, predictable, scalable garbage collection.

Before JEP 376, ZGC would scan the application’s thread stack
during two stop-the-world (STW) phases,
and . This meant that the
application’s root set size would gate the pause time in these
two STW phases. In the quest to achieve pauses shorter than
one millisecond, the ZGC developers decided to concurrently
(with GC threads working at the same time as application
threads [aka mutators]) process the thread stack.

As mentioned above, the thread stack is no longer scanned
during the STW phases, thus reducing any dependency on the
application’s root set size. Therefore, end users can use ZGC for
heap sizes as small as 8 MB and as large as 16 TB and still
expect the pause times to be less than one millisecond!

JEP 386 (Alpine Linux port)

By Mohamed Taman, Java Champion

JDK 16 is bringing many performance
enhancements and memory
management out of the box. Besides,
developers will get many language
features and JVM enhancements.

In my opinion, the most significant part of this JDK release is
JEP 386: Alpine Linux port. The Alpine Linux distribution is
widely adopted in cloud deployments, microservices, and
container environments due to its small image size, which is less
than 6 MB. That applies to embedded system deployments as
well, which are constrained by size.

JEP 386 could revolutionize the running of Java applications in
such an environment as native applications. Additionally, using
the jlink linker, developers can cut down the Java application
runtime environment size with only the required modules to run
their application. Thus, the user could create a very small image
targeted to run a specific application.

Pause Mark StartPause Mark Start

Pause Relocate StartPause Relocate Start

https://bugs.openjdk.java.net/browse/JDK-8252973
https://openjdk.java.net/jeps/376
https://docs.oracle.com/en/java/javase/11/gctuning/z-garbage-collector1.html#GUID-A5A42691-095E-47BA-B6DC-FB4E5FAA43D0
https://twitter.com/_tamanm
https://openjdk.java.net/jeps/386
https://openjdk.java.net/jeps/282

JEP 388 (Windows/AArch64 port), JEP 394 (pattern
matching for instanceof), and JEP 395 (records)

By Josh Juneau, Java Champion

I feel that a couple of the most
significant features for the upcoming
JDK 16 are those that have been in
preview mode for the past couple of
releases. Specifically, JEP 395:
Records and JEP 394: Pattern

matching for instanceof provide two features that will likely be
used by a large number of developers, thereby changing the
way that Java applications are developed moving forward.

These two features are graduating to be fully supported features
in this release. Records help the language to evolve by allowing
constructs to become less verbose and easier to maintain.

In a similar way, pattern matching enables developers to write
code more concisely using patterns, which will not only make
code easier to write but also more maintainable.

I also have my eye on the capability to port JDK 16 to ARM64 on
Windows with JEP 388: Windows/AArch64 port, because this
means that we can now install the JDK on even more devices.

JEP 394 (pattern matching for instanceof)

By Ben Evans, Java Champion

The most significant part of Java 16 is
probably JEP 394: Pattern matching
for instanceof.

At first glance, it doesn’t seem like it.
All this JEP seems to do is get rid of

some ugly casts. For example, this

becomes this

Useful, but not exactly groundbreaking, you might think.
However, sometimes big shifts in the direction of a language
grow from seemingly tiny changes.

if (o instanceof String) {if (o instanceof String) {

String s = (String)o;String s = (String)o;

......

}}

if (o instanceof String s) {if (o instanceof String s) {

// s is now in scope// s is now in scope

......

}}

https://twitter.com/javajuneau
https://openjdk.java.net/jeps/395
https://openjdk.java.net/jeps/394
https://openjdk.java.net/jeps/388
https://twitter.com/kittylyst
https://openjdk.java.net/jeps/394

What is actually being introduced here is the very first step
towards a language feature called pattern matching—but note
that this does not mean the string-matching capabilities that are
delivered via regular expressions.

Instead, a pattern is a combination of a predicate to be applied
to a target expression and some local variables, which are
brought into scope only if the predicate tests true.

In this example, the predicate is “Is o an instance of String?” But
it is now expressed directly in new Java language syntax.

This simple, almost trivial, case of patterns is not, by itself, all
that significant.

If this were the Marvel Cinematic Universe, then JEP 394 is the
original Iron Man movie. Sure, it’s fun, but the real significance is
what it heralds in the larger reality of new language features that
are coming. For example, we might see patterns that can be
used in expressions; patterns that can deconstruct (aka
destructure) records; patterns that combine with sealed classes;
patterns with guards; and much more besides.

JEP 395 (records)

By Heinz Kabutz, Java Champion

Records are one of Java’s most
desired new features. Finally, a way to
deserialize objects by calling the
canonical constructor. No more need
for to
check that no one has tampered with

a serialized object. And so many other great features.

But something far more interesting caught my eye whilst reading
JEP 395: Records.

This JEP proposes to finalize the feature in JDK 16,
with the following refinement:

Relax the longstanding restriction whereby an inner
class cannot declare a member that is explicitly or
implicitly static. This will become legal and, in
particular, will allow an inner class to declare a
member that is a record class.

Yes, that long-standing restriction has often annoyed me. Java
has four different types of nested classes. Here they are:

switchswitch

ObjectInputValidationObjectInputValidation

public class Outer {public class Outer {
 static class Nested { } // 1. static class Nested { } // 1.

 class Inner { } // 2. class Inner { } // 2.

 public void method() { public void method() {
 new Object() { // 3. anonymous new Object() { // 3. anonymous

https://en.wikipedia.org/wiki/Iron_Man_(2008_film)
https://twitter.com/heinzkabutz
https://www.javaspecialists.eu/archive/Issue276-Serializing-Records.html
https://openjdk.java.net/jeps/395
https://docs.oracle.com/javase/specs/jls/se15/html/jls-8.html#jls-8.1.3

Alan Zeichick
Alan Zeichick is editor in chief of Java
Magazine and editor at large of Oracle’s
Content Central group. A former mainframe

Of these four, only the static nested class could contain static
methods. Inner, anonymous, and local classes were out of luck.
The restriction never made sense, and it seemed like Sun
Microsystems was trying to micromanage code structure (see
the section entitled “Members that can be marked static”). From
Java 16, we can now have static methods inside nonstatic
nested classes. For example, this now compiles and runs:

Run it with and you get a
friendly

A word of warning: This should also work with anonymous and
local types. However, it currently crashes the JVM on MacOS. It
runs on Linux and Windows.

Oh, another nice side effect of JEP 395 is that records can be
defined locally inside a method. Since the Java architects had to
refactor the language specification to support this, they at the
same time lifted other restrictions, allowing local interfaces and
enums. These might not seem particularly useful, but I have at
least once wished that local interfaces were allowed. It
sometimes makes sense when working with complex Java 8
streams.

Dig deeper

 }; };

 class Local { // 4. class Local { // 4.
 } }
 } }
}}

public class AVeryGoodMorning {public class AVeryGoodMorning {
 public class ToYou { public class ToYou {
 public static void main(String... args) { public static void main(String... args) {
 System.out.println("How do you do?"); System.out.println("How do you do?");
 } }
 } }
}}

java AVeryGoodMorning\$ToYoujava AVeryGoodMorning\$ToYou

How do you do?How do you do?

The role of preview features in Java 14, Java 15, Java 16,
and beyond



Records come to Java

Pattern matching for instanceof in Java 14

Understanding the JDK’s new superfast garbage collectors

Java on Arm processors: Understanding AArch64 vs. x86

https://blogs.oracle.com/javamagazine/alan-zeichick-3
https://blogs.oracle.com/javamagazine/
https://jcp.org/aboutJava/communityprocess/maintenance/JLS/innerclasses.pdf
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=JDK-8261785
https://blogs.oracle.com/javamagazine/the-role-of-previews-in-java-14-java-15-java-16-and-beyond
https://blogs.oracle.com/javamagazine/records-come-to-java
https://blogs.oracle.com/javamagazine/pattern-matching-for-instanceof-in-java-14
https://blogs.oracle.com/javamagazine/understanding-the-jdks-new-superfast-garbage-collectors
https://blogs.oracle.com/javamagazine/java-on-arm-processors-understanding-aarch64-vs-x86

software developer and technology analyst,
Alan has previously been the editor of AI
Expert, Network Magazine, Software
Development Times, Eclipse Review, and
Software Test & Performance. Follow him
on Twitter @zeichick.

Share this Page

 

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/alan-zeichick-3
https://twitter.com/zeichick
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

