
DESIGN PATTERNS

The Command Pattern in Depth
Packaging commands as objects and
sending them to a receiver enables a clean,
loosely coupled design that’s easy to
maintain.
by Ian Darwin

Orders. Commands. All developers are familiar with them in real life: one
person’s request or demand that another person perform (or not perform)
some action is transmitted to another person or persons. It works the
same in software: one component’s request is transmitted to another in
the Command pattern. In this article, I explain how this pattern works and
illustrate it with several examples. I also demonstrate how it can be
introduced when adding new functionality and when cleaning up existing
code.

A Familiar Example of the Command Pattern

The Command pattern is one of about two dozen patterns popularized in
the book Design Patterns: Elements of Reusable Object-Oriented
Software by Gamma, Helm, Johnson, and Vlissides—known more
concisely as the “Gang of Four” book or even just the “GoF.” (Incidentally,
a less academic, more memorable read is Head-First Design Patterns by
Bates, Sierra, Freeman, and Robson. One other reference worthy of
study is Refactoring to Patterns by Joshua Kerievsky.)

The Command pattern is not simply a method call (or “message” in the
sense that Java’s founders used that term). The request is packaged in
some way, like putting a letter into an envelope and getting the (old
school) post office or courier to deliver it. In software, the request can be
packaged simply as executable code to be performed, it can be a string
in some “little language” devised for that purpose, or it can be anything
that gets the message across.

Perhaps the most familiar example to Java developers is the
 interface used in Swing or the JavaServer Faces

action handler bound to a submit button. Some code, which is often
loosely called the handler, is packaged up and associated with the

 or other control, to be acted upon when the user chooses to
click the button.

In this pattern (Figure 1), the button is called the invoker. The
 implementation is the Command pattern; it consists of

the command or code that the application has sent to the button. The
object to act upon is called the receiver, because it receives the action.
The receiver may be passed as a constructor argument to the Command,
or it may be implicit in the case of a smaller application using a field in the
main class as the receiver.

ActionListener

JButton

ActionListener

The Command Pattern in Depth

A Familiar Example of the
Command Pattern

A Remote Sending Example

An Auction House Example

An Undo Stack Example

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/design-patterns-2
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

Figure 1. Key players in the Command pattern, illustrated with ActionListener

A Remote Sending Example

As another example, if you want to package some arbitrary code for
execution in a different VM—perhaps on a rebel spaceship far, far away
—you could package it into an instance of . The
interface was designed for use in threading, but it’s a perfectly fine
interface to use as a Command interface: it has one method, no
arguments, and a return type. As my colleague Chris Mawata says,
“Use standard interfaces where they serve.”

To run a “hello, world” command on another VM, you could package it
this way:

Nowadays, I’d probably write that as a lambda, like this:

Then, assuming all the network plumbing has been set up, there might be
a method such as to send a command to the server:

To make the code clearer, you could define as an interface that
extends :

 is needed for some of the networking transports that
might be used, such as remote method invocation (RMI), and it costs
nothing anyway. I’d simplify the code by instantiating the lambda inline,
as in the following:

The code on the other end—the “server”—could implement this method
in a simple fashion:

Or, the server could put the command into a batch queue, run it in a
thread pool (see), or use any of
several options. Either way, on the client side, you don’t know and

RunnableRunnable RunnableRunnable

voidvoid

Runnable command = new Runnable() {Runnable command = new Runnable() {
 public void run() { public void run() {
 System.out.println("Hello, world."); System.out.println("Hello, world.");
 } }
};};

Runnable command = () -> System.out.println("Hello, Runnable command = () -> System.out.println("Hello,

submit()submit()

remoteConnection.submit(myCommand);remoteConnection.submit(myCommand);

CommandCommand

RunnableRunnable

public interface Command extends Runnable, Serializapublic interface Command extends Runnable, Serializa
 // empty // empty
}}

SerializableSerializable

remoteConnection.submit(() -> System.out.println("HremoteConnection.submit(() -> System.out.println("H

public void submit(Command c) {public void submit(Command c) {
 c.run(); c.run();
}}

java.util.concurrent.Executor

shouldn’t care. Of course, the interface could be changed to
have arguments and a return type that is not , and it could be an
abstract class instead of an interface. I used as a base just to
get started.

The code in this object could perform arbitrary (and possibly
malicious) actions on the server, so the server should provide a

 and a policy file to control the imported code.

One use of the Command pattern is packaging Java code to tell a remote
process what to do.

All the code for this remote sending example is available in my GitHub
site under remotecommand. There are two subdirectories, server and
client, with Maven and Eclipse files and a README file showing how to
build and run each. If you’re not up to speed on RMI, you might want to
read my Java RMI tutorial.

An Auction House Example

The “Gang of Four” book describes the object as holding a
reference to the receiver; that is, the object on which the work will be
done. In a word processor, the receiver might be a object. In
an online auction house, it might be a or object. My
demo implementation of the auction house scenario, called bidpay, is in
my patterns-demos GitHub repository. My scenario is so simplified from
real life that you can bet it will forever be outbid on eBay, but it’s
developed enough to show some interesting aspects of the Command
pattern.

In that implementation, is a top-level interface, and two
implementing classes with a field (the object) are
given: and . Here is the former:

The intent is that the main program, , doesn’t need to know
or care what the clients are sending it. As long as the objects implement

, it will be happy, and the class will receive what’s
sent and process it.

There are times when you want multiple commands to execute as a
single command (for example, something like database transactions, or
batching, or reducing network traffic on a remote connection). You could
create a , which is created with an array or List of
commands. The execute method of a List implementation could be
something like this:

CommandCommand

voidvoid

RunnableRunnable

CommandCommand

SecurityManager

Command

Document

Listing Auction

CommandCommand

ReceiverReceiver AuctionAuction

BidCommandBidCommand CancelCommandCancelCommand

public class BidCommand implements Command {public class BidCommand implements Command {
 Auction receiver; Auction receiver;
 double amount; double amount;
 Client bidder; Client bidder;
 public void execute() { public void execute() {
 receiver.bid(amount, bidder); receiver.bid(amount, bidder);
 } }
 // Obvious three-argument constructor not shown // Obvious three-argument constructor not shown
}}

BidPaySiteBidPaySite

CommandCommand AuctionAuction

public class BidPaySite {public class BidPaySite {
 public void submitCommand(Command command) { public void submitCommand(Command command) {
 // These could go into a queue to serialize // These could go into a queue to serialize
 // or you could make sure that all methods e // or you could make sure that all methods e
 // to the Command are thread-safe. // to the Command are thread-safe.
 // For now, just let the command do its thin // For now, just let the command do its thin
 command.execute(); command.execute();
 } }

}}

CompositeCommandCompositeCommand

https://github.com/IanDarwin/remotecommand
https://darwinsys.com/java/rmi
https://github.com/IanDarwin/patterns-demos/tree/master/src/main/java/behavioral/bidpay

An Undo Stack Example

I’ve shown that one use of the Command pattern is packaging Java code
to tell a remote process what to do. A different use would be the undo
stack in an editor or word processor. When you request an operation
such as “insert,” “move,” or “delete,” the editor program could create a
Command object representing the operation to be performed. This object
would then be passed to a “perform” method in the editor and, upon
successful completion, it would be added to the undo stack.

The stack could be implemented as a simple push-down stack of objects
of the type. When you request an undo operation, the
top element is popped off the stack, and it is passed to an “unperform”
method in the editor, which removes the inserted text if the operation was
an insertion, reinserts the deleted text if the operation was a deletion, and
so on. In a full implementation, you wouldn’t actually pop the undoable
action and drop it after use; you would keep it there for use by a redo
command.

In adding base undo functionality into a simple line-editor called edj (also
on my GitHub site), I took a slightly simpler approach. To provide a
degree of separation between the main code and the “model” (here, the
in-memory buffer-handling code), I built the editor from the start with an
interface called between the main code and the
operations on the buffer. These are primitive operations such as “add
lines,” “delete lines,” and so on.

There are two versions of the code: and
. In real life, you probably don’t need these, so

you might not even need the interface, but having them both makes it
easier to compare them to see all the changes. In the first version of the
code, there was no undo operation. So the first step was refactoring to
include the undo capability in the interface, and then have the no-undo
implementation, shown next, just print a message:

Then, instead of writing code to decipher and reverse each command, I
have the “with undo” version of each low-level modify operation create
and push an object that contains the exact code to
undo the operation. For diagnostic purposes, I associate a String with
each , so the looks like this:

class CompositeCommand implements Command {class CompositeCommand implements Command {
 List<Command> commands; List<Command> commands;
 public void execute() { public void execute() {
 commands.forEach(Command::execute); commands.forEach(Command::execute);
 } }
 // Obvious one-argument constructor omitted // Obvious one-argument constructor omitted
}}

EditorCommand

BufferPrimsBufferPrims

BufferPrimsNoUndoBufferPrimsNoUndo

BufferPrimsWithUndoBufferPrimsWithUndo

public interface BufferPrims {public interface BufferPrims {
 void addLines(int start, List<String> newLines) void addLines(int start, List<String> newLines)
 void deleteLines(int start, int end); void deleteLines(int start, int end);
 /** Print one or more lines */ /** Print one or more lines */
 void printLines(int i, int j); void printLines(int i, int j);
 /** Undo the most recent operation */ /** Undo the most recent operation */
 void undo(); void undo();
}}
public class BufferPrimsNoUndo extends AbstractBuffepublic class BufferPrimsNoUndo extends AbstractBuffe
 public void undo() { public void undo() {
 System.err.println("?Undo not written yet") System.err.println("?Undo not written yet")
 } }

}}

UndoableCommandUndoableCommand

UndoableUndoable UndoableUndoable

class UndoableCommand {class UndoableCommand {
 public UndoableCommand(String name, Runnable r) public UndoableCommand(String name, Runnable r)
 this.name = name; this.name = name;
 this.r = r; this.r = r;
 } }

https://github.com/IanDarwin/edj

The two constructor arguments provide all the information you could
want, because the undo actions can be simple (the undo of inserting a
number of lines is just to delete the inserted range of lines) or complex
(the undo of deleting some lines must include all the text of the deleted
lines). For example, here is a slightly simplified look at :

The method is simply a convenience routine that creates
the and pushes it on the stack:

Now the undo implementation becomes trivial (error handling is omitted):

Here is an example of the edj editor in action:

1. I run edj, telling it to start with the sample three-line file included
with the source code.

2. The command prints all the lines in memory; it’s short for 1,Np
where N is the number of lines in the buffer.

3. The command deletes the second line.

4. I print the whole thing again to show that the deletion worked.

5. I invoke the newly added undo feature using the command.

6. I print the buffer again to show that line 2 was miraculously restored
by the command.

7. I use the command to quit.

At this point, the undo operation in edj worked nicely. I had refactored the
bottom layer made of buffer primitives. But when I went to hook this code

 String name; String name;
 protected Runnable r; protected Runnable r;
}}

addLines()addLines()

public void addLines(int startLnum, List<String> newpublic void addLines(int startLnum, List<String> new

 buffer.addAll(startLnum, newLines); buffer.addAll(startLnum, newLines);
 current += newLines.size(); current += newLines.size();
 pushUndo("add " + newLines.size() + " lines", pushUndo("add " + newLines.size() + " lines",
 () -> deleteLines(startLnum, startLnum + new () -> deleteLines(startLnum, startLnum + new
}}

pushUndo()pushUndo()

UndoableCommandUndoableCommand

private void pushUndo(String name, Runnable r) {private void pushUndo(String name, Runnable r) {
 undoables.push(new UndoableCommand(name, r)); undoables.push(new UndoableCommand(name, r));
}}

public void undo() {public void undo() {
 UndoableCommand undoable = undoables.pop(); UndoableCommand undoable = undoables.pop();
 undoable.r.run(); undoable.r.run();
}}

,p

2d

u

u

q

$ edj 3lines.txt // 1
3L, 26C
,p // 2
Line One
Line Two
Line Three
2d // 3
,p // 4
Line One
Line Three
u // 5
,p // 6
Line One
Line Two
Line Three
q // 7
$

into the main line code of the editor, I was reminded that that code is
large and hoary. The main loop was something like this:

The book Refactoring to Patterns calls such code a conditional
dispatcher, because it uses a conditional statement (a long chain of if
statements, but a is also common). There’s nothing inherently
wrong with writing code this way, but it can lead to really long methods
that are hard to read. You could extract each bit of code into a named
method, but that leads to a lot of method names. Ideally, for a couple of
reasons, conditional dispatcher code is refactored to use the Command
pattern. One reason is if the code requires more flexibility. Another, as the
book says, is the following:

“Some conditional dispatchers become enormous and unwieldy as they
evolve to handle new requests or as their handler logic becomes ever
more complex with new responsibilities.”

That is exactly a description of the line editor’s main loop: as more
commands are implemented, the size of the code in the chain
or statement will grow larger without bound.

So I replaced the main loop with a table of Command implementations:
an array, indexed by the first letter of each command, is nice and simple.
This approach also forced me to provide standardized parsing of the
input lines, which up to now was done on demand in the various sections.
I introduced the class to hold the information about the
input line and, in fact, it is a form of Command object, because it
describes what to do (but not how, and the receiver is still implicitly
).

The method is used in this version for debugging, but in a
GUI editor, it would appear in the Undo menu item.

The executable Command objects—the actual code—are defined by the
interface :

With that structure, I was able to trim the main loop to look like this (error
checking omitted):

while ((line = in.readLine()) != null) {while ((line = in.readLine()) != null) {
 if (line.startsWith("e")) { if (line.startsWith("e")) {
 // code to edit a new file // code to edit a new file
 } else if (line.startsWith("f") { } else if (line.startsWith("f") {
 // code to print or set filename // code to print or set filename
 } ... } ...
 } }
 // many more if/else statements, one per command // many more if/else statements, one per command
}}

switch

if-else

switch

ParsedLineParsedLine

thisthis

public class ParsedLine {public class ParsedLine {
 char cmdLetter; // 'a' for append, 'd' for delet char cmdLetter; // 'a' for append, 'd' for delet
 boolean startFound, commaFound, endFound; boolean startFound, commaFound, endFound;
 int startNum, endNum; int startNum, endNum;
 String operands; // The rest of the line String operands; // The rest of the line
 public String toString() { public String toString() {
 return String.format("%d,%d%c%s", startNum, return String.format("%d,%d%c%s", startNum,
 operands == null ? "" : (' ' + operands operands == null ? "" : (' ' + operands
 } }
}}

toString()toString()

EditCommandEditCommand

public interface EditCommand {public interface EditCommand {
 void execute(ParsedLine pl); void execute(ParsedLine pl);
}}

while ((line = in.readLine()) != null) {while ((line = in.readLine()) != null) {
 ParsedLine pl = LineParser.parse(line, buffHandl ParsedLine pl = LineParser.parse(line, buffHandl
 EditCommand c = commands[pl.cmdLetter]; EditCommand c = commands[pl.cmdLetter];

Ian Darwin
Ian Darwin (@Ian_Darwin) is a Java Champion who
has done all kinds of development, from mainframe
applications and desktop publishing applications for
UNIX and Windows, to a desktop database
application in Java, to healthcare apps in Java for

That is, I parse the line into a structure, use the command
code from that to find the executable object, and invoke
that. The array of objects named is initialized
in a static block using assignments like this:

In other words, each is constructed as a lambda, passing
the as a parameter to the method. As before, the
receiver is implicitly the buffer handler.

I’ve described two uses of Command in my line editor. But most people
don’t use line editors anymore; they use screen-based editors. And the
Swing UI framework already has support for undo operations. I have a
simple notepad-style editor called TinyPad that uses this feature. There
isn’t room to dissect it here, but if you want to look at its code, check out
this GitHub repository. In the “before” version, a
was attached to the main (and only) document, so that when the

 made any changes to the model, I’d be notified, and an
 boolean would be set to prompt for unsaved changes

when exiting.

In the “after” version, I use Swing’s and
. To see how all those pieces fit together, look at the code

starting at and the Command
objects and .

The GoF book says this: “A command can have a wide range of abilities.
At one extreme, it merely defines a binding between a receiver and the
actions that carry out the request. At the other extreme, it implements
everything itself without delegating to a receiver at all…[in between] are
commands that have enough knowledge to find their receiver
dynamically.”

In bidpay, the command has an explicit receiver and is little more than
that binding. In edj, there’s only one source file, so the document is
available to all code and does not need to be passed with the command.
In TinyPad, the command—when coupled with the undo manager—is
smart enough to know its associated document internally.

Conclusion

The Command pattern isn’t just for undo stacks, of course. It’s good for
remote execution (as you saw in my first example) and for journaling in
database-like systems and file systems to be re-executed after a crash. A
composite version can be used to implement database-style transactions
and batch processing.

The Command pattern is a good example of a general-purpose design
pattern that has many uses and, when applied properly, it will clarify your
code and make it more readable and maintainable. And that’s largely
what this patterns business is all about.

This article was originally published in the May/June 2018 issue of Java Magazine.

 c.execute(pl); c.execute(pl);
}}

ParsedLineParsedLine

EditCommandEditCommand

EditCommandEditCommand commandscommands

// d - delete lines// d - delete lines
commands['d'] = pl -> {commands['d'] = pl -> {
 buffHandler.deleteLines(pl.startNum, pl.endNum) buffHandler.deleteLines(pl.startNum, pl.endNum)
};};

EditCommandEditCommand

ParsedLineParsedLine executeexecute

Document Listener

TextAreaTextArea

unsavedChangesunsavedChanges

UndoableEditListenerUndoableEditListener

UndoManagerUndoManager

// Set up Undo/Redo actions// Set up Undo/Redo actions

UndoActionUndoAction RedoActionRedoAction

https://blogs.oracle.com/javamagazine/ian-darwin
https://blogs.oracle.com/javamagazine/ian-darwin
https://github.com/IanDarwin/tinypad
https://www.oracle.com/a/ocom/docs/corporate/java-magazine-may-june-2018.pdf

Android. He’s the author of Java Cookbook and
Android Cookbook (both from O’Reilly). He has also
written a few courses and taught many at Learning
Tree International.

Share this Page

 

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

