

1 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Data Sheet

Siebel CRM - ODA Integration
Approach

Technical Brief

October 2021
Copyright © 2021, Oracle and/or its affiliates
Public

2 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Table of contents

1. Introduction 3
Before You Begin 3
Importance of Digital Assistants for Siebel Customers 3
Basic Concepts 4

2. Architecture 5
Technical Overview 5
Communication Flow 6

3. Developer Guide 7
Step 1: Identifying Intents and Conversation flows 7
Step 2: Establish Skill Security 8
Step 3: Define Dialog Flow 8
Step 4: Developing Custom Components for Siebel Integration 11
Step 5: Testing and Publishing a skill 14
Step 6: Reusing Skills 16

4. Using Predefined Skills 18
Service Request Skill 18

5. Agent Handover 20
6. Skill Security 23

ODA OAuth 2.0 Security Flow 24
Siebel OAuth Enablement 24
Authorization Flow 27
Siebot Authorization Types 28
Connecting to Siebel on-premise 30

7. Learn More 31

3 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

1. Introduction

This technical brief is a practical guide for technical users who want to integrate
Oracle Digital Assistant (ODA) with Siebel CRM. In this document, we will cover
the architecture and the integration approach.

Before You Begin
This document is intended for developers with a basic understanding of Siebel
CRM and ODA.

The integration requires a working ODA instance and Siebel CRM version of
21.x or above.

Importance of Digital Assistants for Siebel Customers
As business move towards more digital models, there is a gap that is to be filled
for supporting modern channels where our customers can serve ‘Digital
Natives’. To bridge this gap, Digital Assistants are the way forward. Finely tuned
Digital Assistants can provide a more personal and engaging experience as they
help users perform rote tasks.

From our customer’s perspective, they reduce their operating costs in
supporting these journeys via agents or business development teams and drive
efficiency and productivity.

Oracle Digital Assistant is a platform that allows you to create and deploy digital
assistants for your users. Digital assistants are virtual devices that help users
accomplish tasks through natural language conversations, without having to
seek out and wade through various apps and web sites.

Each digital assistant contains a collection of specialized skills. When a user
engages with the digital assistant, the digital assistant evaluates the user input
and routes the conversation to and from the appropriate skills.

You can populate your digital assistant with skills from the Skill Store and with
skills you have designed yourself. You can make digital assistants available to
users through a variety of channels, such as Facebook Messenger, Slack, and
your own mobile apps.

Meet users where they are

As digital business models rise, brands need to transform Customer Service,
driven by on-demand self-service and proactive engagement. They need to
ease the administrative burden by automating repetitive tasks and enable
single window for information access by employees. Digital Assistants can
help in achieving all this.

Engage customers and employees
with an AI-powered digital assistant
that captivates users in a
personalized manner, while
delivering actionable insights to
your sales, service, and marketing
teams.

CUSTOMER VALUE

� Transform Service
experience - reach
customers / employees on
new channels.

� Expand your reach to you
employees and customers
increasing operational
efficiency and reducing
cost.

� Get started with a
library of ready to go
skills; Build your own to
meet your specific
needs.

4 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Basic Concepts
Before you dive into digital assistant and skill development, here are some concepts you’ll want to get familiar with:

• Intents - Categories of actions or tasks users expect your skill to perform for them.

• Entities - Variables that identify key pieces of information from user input that enable the skill to fulfil a task.

• Both intents and entities are common NLP (Natural Language Processing) concepts. NLP is the science of
extracting the intention of text and relevant information from text.

• Components - Provide your skill with various functions so that it can respond to users. These can be generic
functions like outputting text, or they can return information from a backend and perform custom logic.

• Dialog Flow - The definition for the skill-user interaction. The dialog flow describes how your skill responds
and behaves according to user input.

• Channels - Digital assistants and skills aren’t apps that you download from an app marketplace, like iTunes.
Instead, users access them through messaging platforms or through client messaging apps. Channels, which
are platform-specific configurations, allow this access. A single digital assistant or skill can have several
channels configured for it so that it can run on different services simultaneously.

In this document, we will cover how Siebel users can integrate and embed Digital Assistant in Siebel’s context.

5 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

2. Architecture

Technical Overview
A high-level overview of Siebel Integration with Oracle Digital Assistant is depicted in the below diagram. ODA is a
cloud solution provided by Oracle and can be integrated with on-premise or on OCI Siebel Instances.

Key architectural components:

Chat Client: Chat client establishes connection with skills through the web channel. ODA provides a set of Javascript
files named as WebSDK, which take care of construction of Chat Client within and HTML page or Siebel.

Skill: This refers to the actual bot deployed on ODA instance. This contains different Intents, Utterances and
Dialogflow for the bot. The conversation between the user and bot is designed and defined in the skill. Refer to ODA
documentation for more details.

Siebel Custom Components: Custom components are reusable units of code that can be called from skill's dialog
flow. Custom component code is written using Javascript and NodeJS and is deployed in the ODA Node JS
container. The custom components are local to a skill within ODA.

Two different skills in ODA with the same code deployed in them will run as two separate instances. The Siebel
delivered skill comes with a packaged custom components code. The delivered custom component library and the
package contains security logic and additional methods to facilitate ODA to Siebel communication.

6 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Communication Flow
Digital Assistant routes the user requests coming from various channels to the Siebel skill bot. Here, user intents
are resolved, and the interaction flow is determined. Custom components defined in skills, integrate the back-end
Siebel system to perform specific tasks.

Also, in case of agent handover, the WebHooks are defined to manage the connection and establish a pipeline of
messages between ODA and Agent’s chat server.

Below is the step-by-step flow of information during the interaction between ODA and Siebel.

Step 1. Authenticate and Authorize the user

Step 2. Send user’s message to ODA

Step 3. Route user’s message to the relevant ODA skill

Step 4: Invoke Siebel REST APIs corresponding to the Intent

Step 5: Execute Siebel business logic and send the response back to ODA

Step 6: Digital Assistant processes the response and renders in the chat client

7 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

3. Developer Guide

Step 1: Identifying Intents and Conversation flows
Identifying Intents

Intents allow the skill to understand what the user wants it to do. An Intent categorizes typical user requests by tasks
and actions that the skill performs. Intents are comprised of permutations of typical user requests and statements,
which are also referred to as utterances. Intents are created by naming a compilation of utterances for a particular
action. Because skill’s cognition is derived from these Intents, each Intent should be created from a data set that is
robust (one to two dozen utterances) and varied, so that the skill can interpret ambiguous user inputs. A rich set of
utterances enables a skill to understand what the user wants.

Before starting actual development for Siebel skill or customizing an existing skill, it is important to recognize what
changes are required. The first step is to decide the scope of the skill or change. Identify which business
requirements are to be fulfilled. Once Identified, use that information to decide what are the Intents and entities
required for your Skill.

Develop conversation Flow

Once Intents and Entities are identified, the next step in the design process is to develop the plan for conversational
flow (Dialogflow). Conversational Design is the craft of imparting in a machine those human-like capabilities that
enables the machine to interact with humans conversationally, on their terms – not on the machine’s.

The easiest way to develop and describe the plan is to have a separate flowchart developed for each for the Intent
resolution. Consider the different interactions and validations involved in the conversation. Identify, at which point
in the interaction or the flow, Siebel Service calls are required for information or logic, and the possible Inputs,
outputs and logical branching scenarios required after the service call.

Conversational design tactics

A few design best practices for conversational design:

• Limit open-ended questions

• Break responses into bite-sized chunks

• Offer more information in answers (e.g., hyperlinks)

• Confirm prior to segueing into transactional interactions

• If the chatbot goes off track, immediately escalate to an alternative

Required Rest Services

At the end of designing the conversation, the detailed flow charts for each of the Intent could be used by a
developer to identify the different Application Services required and what should be the Input-Output Parameters
and the Result States for the respective services.

Once the Services required have been identified, we need to ensure the corresponding Siebel REST Services are
available. Please refer to Siebel Rest API Guide for details.

8 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Step 2: Establish Skill Security
Refer to the chapter ‘Skill Security’ for detailed Security mechanisms available for Siebel CRM – ODA integration.

Step 3: Define Dialog Flow
The dialog flow definition is the model for the conversation itself, one that lets you choreograph the interaction
between a skill and its users. Using the Flow Editor, you define the framework of the user-skill exchange in Siebel
bot, Digital Assistant’s own implementation of YAML. This is a simple markup language, one that lets you describe
a dialog, both in terms of what your skill says and what it does.

Dialog Flow Structure

The skill definition is divided into two main parts – Context and States.

Context defines the variables that are available across the session.

States maintain the definition of the flow itself.

Define each part of the dialog and its related operations as a sequence of transitory states, which manage the
logic within the dialog flow. To cue the action, each state node within the skillbot definition, names a component
that provides the functionality needed at that point in the dialog. States are essentially built around the
components. They contain component-specific properties and define the transitions to other states that get
triggered after the component executes.

Components

Components give the Skill its actual functionality. The state nodes in the dialog flow definition are built around
them. These reusable units of work perform all types of tasks and functions - from the basic management of the
dialog flow to case-specific actions.

Every state in the dialog flow names a component that performs an action, such as accepting user input, verifying
that input, or responding with text. Each component has a specified set of properties that can be used to pass and
receive values as well as control the component's behavior.

A state definition might include the transitions that are specific to the component or the standard
next, error, actions, or return transitions. Transitions describe how the dialog forks when variable values are either
set or not set.

9 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

There are two types of components that can be used in a dialog flow – built-in components and custom
components. When the Dialog Engine enters a state in the dialog flow, it assesses the component. When it
encounters one of the built-in components, it executes one of the generic tasks, such as display a message or
prompt the user to enter text. When the Dialog Engine discovers a custom component, however, it calls the
component's service, which hosts one or more custom components.

Built-in Components

ODA provides a set of components that support a range of generic actions, which can be used in any skill:
security, parsing the user input, routing the dialog flow based on that user input, and outputting the skill’s
responses in various ways.

To add a state for a built-in component to the dialog flow, click + Components on the Flows tab, select the
component type, and then select the component. The component's template is displayed, which lists the
component's properties with descriptions.

When you validate your dialog flow, Oracle Digital Assistant verifies the component's properties. For example, it
will report if you forgot to include a required property.

Custom Components

Most skills need to integrate with data from remote systems or do some backend processing. For example, service
request skill needs to get the status of your service requests from Siebel server and display the same in the
conversation. Custom components enable you to integrate with backends as well as perform tasks that aren't
covered by the built-in components.

10 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Here's an example of a custom component state in the dialog flow.

createSR is the name of the custom component which takes the variables email address, product category, SR
type and description as the input. Based the execution status of the custom component, it will transit next to a
success or failure state.

Understanding Custom Components Structure

The ODA architecture expects the custom components to be JS modules (usually each component is a different
module). Every custom component could be said to be an implementation of the following interface:

The following is the code sample for a greeting Custom component with input property “name”. The custom
component uses the conversation object to send a reply to the chat client with a customised greeting that contains
a name in it.

11 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Note: Please refer to the ODA documentation for understanding the custom components further in detail.

Step 4: Developing Custom Components for Siebel Integration
Custom Components

Custom components are re-usable units of work that are defined within each state node of the Dialog flow.
However, unlike the built-in components, custom components perform actions that are specific to the bot. They
execute functions that the system components cannot perform. You can "package" related custom components
together, into a component service.

Common activities performed by custom components include:

• Modify/Change the variable value in the incoming payload sent from the Dialog flow.

• Implement custom logic/rules.

• Invoke the target Siebel REST API end point for taking action or getting the necessary data from Siebel.

Install Oracle Bots Node.js SDK

The Oracle Bots Node.js SDK is a Node module for building and deploying custom component services for Oracle
Digital Assistant.

1. To install the Oracle Bots Node.js SDK for global access, enter the following command in a terminal window:

npm install –g @oracle/bots-node-sdk

2. To verify the success of the installation, enter this command and check the version: bots-node-sdk –v

12 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Create a Custom Component Package

You can use the bots-node-sdk init command to create a package structure with the necessary files, including a
custom component and the javascript file.

For example: we can use this command “bots-node-sdk init converterccs –name converterccs –component-name
CurrencyConverter”, to create a currency converter package.

The command creates a subfolder named coverterccs, which contains main.js and package.json files, along with
the installed dev dependencies in node_modules. It also creates a components folder that contains
CurrencyConverter.js file.

For our Service Request custom component, we can use the below command to generate the folder structure:

bots-node-sdk init SiebelSR –name SiebelSR –component-name ServiceRequest

A screenshot of the folder created by this command:

Inside the components folder, ServiceRequest.js file will be generated. The logic and code for the custom
components needs to be written in this file.

13 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

The integration with a remote backend system by the help of a Rest API can be done with the help of this
javascript file. For example, in case of Siebel Service Request, we will use the following rest API:
https://<server_name>:32701/siebel/v1.0/data/Service Request/Service Request/?[search spec]

Service Request ID from the ODA user is passed in the search spec of the above URI. The Service Request
summary returned by Siebel can be output in various forms like, text or a “Card Format” (for specific details,
please refer to ODA documentation).

Package and Deploy the Custom Component Service

You can deploy custom components to either a skill’s embedded container, Oracle functions, a remote node
server, or Oracle Mobile Hub.

1) Save your work in your Javascript IDE

2) Open a terminal window and navigate to your components folder, in this case the SiebelSR folder.

3) In the SiebelSR folder, enter this command: “bots-node-sdk pack”

The command then packages the Node Project and its dependencies into a deployable tarball, true-1.0.0.tgz as
shown below:

14 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Deploying the Custom Component Service to your Skill

1) After creating a skill, click Components to open the component service page.

2) Click +Add Service to open the Create Service Dialog.

3) In the Name field, enter the custom component name, in this case we will use Siebel Service Request.

4) Enter the appropriate description.

5) Ensure that Embedded Container is selected.

6) Locate the true-1.0.0.tgz file in the SiebelSR folder on your file system

7) Drag and drop the true-1.0.0.tgz file into the Create Service dialog’s Package File field.

8) Switch Enable Component Logging to On.

9) Click Create.

Step 5: Testing and Publishing a skill
The Conversation Tester lets you simulate conversations with your skill to test the dialog flow, intent resolution,
entity matching, and Q&A responses. You can also use it to find out how conversations would render in different
channels.

To start the Conversation Tester:

1. Open the skill that you want to test.

2. At the top of the page near the Validate and Train buttons, click play button.

15 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

3. To preview how a skill renders on a given channel, select the channel type from the Channel dropdown.
The Conversation Tester simulates how the skill behaves within the limitations of a given channel. By
default, the Conversation Tester simulates the Webhook, which renders the UI per the Oracle Web SDK.

4. In the text field located at the bottom of the Tester, you can either choose the language for the entire
conversation from among the supported languages configured for the skill or click Detect
Language option for the skill to automatically detect the language of your text or spoken message.

5. For voice, you need to click Speak for each voice command. Click Attach to test a file, audio, video,
or image attachment response. For example, you can use Attach to test an attachment response
rendered by the System.CommonResponse component.

Typically, you’d use the Conversation Tester after you’ve created intents and defined a dialog flow. It’s where you
actually chat with your skill or digital assistant to see how it functions as a whole, not where you build Q&A or
intents.

Track Conversations

In the Conversation tab, the Tester tracks the current response in terms of the current state in the dialog flow.
Depending on where you are in the dialog flow, the window shows you the postback actions or any context and
system variables that have been set by a previous postback action. It also shows you any URL, call, or global
actions.

In the Intent/Q&A tab, you can see the resolved intent that triggered the current path in the conversation. When
the user input gets resolved to Q&A, the Routing window shows the ranking for the returned answers. If the skill
uses answer intents for FAQs, then only the resolved answer intent is displayed.

Finally, the JSON window shows you the complete details for the conversation, including the entities that match
the user input and values returned from the backend. You can search this JSON object or download it.

Publishing a Skill

When you’ve completed building a version, you can lock it down by publishing it. The only modification that you
can make for a published skill is to change custom parameter values in the Configuration tab. If you want to make
further modifications, you must create another version and work on that one.

To publish a version:

1. If the skill has intents or Q&A, make sure it has been trained. You must train it before you can publish it.

2. From the Skill Catalog, locate the version that you want to publish.

3. Click the Options icon and select Publish.

The skill version in the Skill Catalog now has a lock icon to show that it’s published.

16 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Step 6: Reusing Skills
You can extend any skill that you have pulled from the ODA skill store to customize it for cases specific to your
business. When a new version appears in the Skill Store, you can transfer your customizations to the new version
by rebasing.

What is Extension & What's it for?

When you install bots from the skill store, they may not satisfy all your requirements, or you may want to modify
them to align with your business processes. You can't modify an installed bot directly, but you can create an
extension of it and then modify that extension.

When you create an extension, you are creating a new bot that has a tight relationship to the original (base) bot.
Through this relationship, you can later take advantage of updates to the base bot without having to manually
reapply your customizations. You do this by using the Rebase feature. When a new version of the base bot
becomes available in the Skill Store, you can install that version into your instance and then rebase your extended
bot to the updated base version.

Cloning vs Extending

Though cloning and extending are similar on a surface level, they have key differences and purposes:

When you create a clone of a bot:

• You create a totally independent copy of the bot.

• You can make unlimited changes to the clone.

• The clone loses all association with the original bot (the tracking IDs for the cloned bot do not match
those of the original), so you can't later rebase to an updated version of the original bot.

Use cloning when you want to use an existing bot as a starting point for your development.

When you extend a bot:

• You can make a wide range of additions and changes to the extended bot but you cannot delete anything
that was defined in the base bot.

• You can later rebase, which means applying updates from the base bot into your extended bot. Rebasing
is possible for extended bots because the internal tracking IDs that are generated for the extended bots
match those of the base bots.

Use extension when you want to customize a bot and then later be able to incorporate any improvements or new
features from the base bot into your customized version. You can only extend skills that you have pulled from the
Skill Store.

Extend a skill

Here's what you need to know about extending skills that you have pulled from the Skill Store.

1. Click to open the side menu, and select Development > Skills.

2. In the tile for the skill that you want to extend, click the Options icon (), and select Extend.

The skill to be extended should be pulled from the Skill Store.

17 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

What You Can Add and Customize in an Extended Skill

Intents: You can add utterances, change existing utterances, and add new intents. You can't delete utterances or
intents, but you can disable intents.

Entities: You can add entity values, add synonyms to entity values, and add new entities. In addition, you can edit
these fields:

• Enumeration Range Size

• Error Message

• Multiple Values

• Fuzzy Match

However, you can't delete entities or delete or change entity values.

Dialog Flow: You can make changes throughout the dialog flow. There are no specific limitations. However, no
deltas are tracked by the system. When you rebase the skill extension, you are presented with a diff tool to
compare your dialog flow side-by-side with that of the new base skill. It's then up to you determine what to keep
from your skill and what to bring forward from the new base skill.

Resource Bundles: You can add new message keys in any of the supported languages and modify any of the
existing messages.

Custom Component Service: You can replace the package file and add components to the service. You can't
remove existing components. You can change the implementation of custom components in your extended
skill. However, if the custom component is later updated in the base skill, those updates will not be merged with
any changes you have made to the component in the extended skill when you rebase your skill. In this case, you
would need to manually merge the custom component changes from the updated base skill into your extended
skill.

Settings: You can adjust most of the settings for the skill, including:

• General properties, like skill description.

• Training model.

• Whether insights and conversation logging are enabled.

• Values of system parameters, such as confidence threshold and standard prompts.

• Custom parameters. (You can create new custom parameters and modify values of existing ones.

Disable Intents

When you extend a skill, you can't remove intents, but you can disable them.

When you disable an intent, you exclude it from the training model. Any user input that would otherwise match
well with a disabled intent's training data will instead resolve to a different intent (likely unresolved Intent).

If you later rebase the skill, any intents that you have disabled will remain disabled. If you re-enable an intent after
rebasing, you will pick up any changes that were made to that intent in the base skill.

18 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

4. Using Predefined Skills

Service Request Skill
Introduction

The sample Service Request skill is designed to enable customers to raise a new service request, to get the real time
status on their service requests, to locate a service center within area covered by a pin code and view product demo
videos. With the help of this chatbot, customer can get address and contact details of the registered service center
in Siebel database, they can get instant status on the given SR number or they can get status on all their recent SRs
raised in one go. Based on the status, customers can take appropriate actions like escalate an SR, talk to an agent
in case they are not satisfied. The skill consists of multiple intents where each intent is responsible to fulfill certain
user queries.

Intents

Intents allow the skill to understand what the user wants it to do. The service request skill consists of the following
intents:

S. No. Intent Name Function Example Utterances Entities
1 WelcomeMessage Greets the customer and

prompts user with the
probable suggestions to get
started

Hello.

Hi!

Can you help me?

Good Morning!

None

2 RaiseSR Verifies the user and creates
a new service request based
on user inputs

I want to raise an SR

I want to create to Service
Request

Help me in creating an SR

EmailAddress

3 StatusEnquiry Takes SR number as the
user input and displays the
status

I raised a Service Request

I want to enquire about my
issue

Service Request Status?

Complaint Status?

What is the status of my SR
296-4563452?

SR_Number

4 ShowProdDemo Shows a list of demo
products and displays the
video based on user
selection

Can I see the video for the
product?

Can you show me a demo?

Are there any demos
available?

I want to see demo of your
product

None

19 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

S. No. Intent Name Function Example Utterances Entities
5 BranchLoc

Takes zip code as the input
and provides service centers
in that area

Can you give me a service
center address?

Find me Service Centre
near 92704

ZipCode

4 Unresolved Triggers when skill is unable
to find any corresponding
intent.

It doesn’t help me

This doesn’t make sense

None

Entities

S.No. Entity Name Type Value

1 SR_Number RegularExpression Defines the value of a service request number

2 SRStatus ValueList Approved, Closed, In-Progress, Open, Rejected

3 EmailAddress Regular Expression Defines the value of user email address

4 SRType Value List Grid Connection, Panel, Panel Monitor, Peripherals

5 Product Value List Supremo Charge Controller, Supremo Microgrid,
Supremo Roof Panel, Supremo Tubular Battery

6 ZipCode Regular Expression Defines the value zip code of an address

Custom Components

SRUserInquiry

This component invokes Siebel REST service and retrieves the service request status based on the user
parameters. It takes user and idcsCCToken for authorization as the inputs and consists of the following actions:

1. MyRequestsList - Returns the list of recent SRs logged by the user (currently set to a max value of 5).

2. myRequestsListTopFive – In case there are more than five records, the parameter returns the list of top
five SRs.

3. TooManySRs - Asks user about the SR number if the recent SR count is greater than the max value count.

4. SRSummary - Returns the summary of the SR.

5. Failure - Any failure in getting the SR status will result in transferring the control to the agent.

SRSummary

This component is responsible for returning SR status for a particular SR number. It takes input parameters as
idcsCCToken for authorization and SR Number and returns the status of the same in case of a success and returns
failure otherwise.

20 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

verifyAccount

This component verifies a given user based on the provided mobile/email. It returns the success if the user is
verified otherwise returns a failure.

createSR

With the help of this component, a new service request is raised. It takes user input parameters like product
category, SR type, description, idcsCCToken for authorization and creates a new service request for that user. It
returns the new SR Number created on success and returns failure in case something goes wrong.

getDemoURL

This component returns the demo URL for the selected product by the user. It takes idcsCCToken for
authorization and product id as input. The component will return failure in case the requested product video URL
not found, or any error occurred.

getAddress

This component invokes a rest service query to Siebel CRM to get the service centers based on the user
parameters. It takes zip code and idcsCCToken for authorization as input. It consists of the following actions:

fetchSuccess - Returns the list of service centers in a card layout.
fetchFailure - Triggered when no service center is found.

5. Agent Handover

This section provides a view on escalation of user chat from ODA skill to a live agent and back to the ODA skill.

There could be situations where the bot is unable to understand user intent or user may not be satisfied with the
responses of the bot. In such scenarios, chat can be transferred from the bot to a live agent, who can converse
with the user, perform actions, and can shift control back to the bot.

Customers can leverage a Chat Server for which, REST APIs are available for the integration.

Components involved:

Component Description

Bot User The end user chatting with the ODA bot.

Agent Agent conversing with the user using Chat Server.

ODA The ODA bot, that will be communicating with the User as well as the WIS to transfer
user requests to live agent.

Webhook
Implementation
Server (WIS)

This server acts as an intermediary between the ODA and the Chat Server. It is
responsible for processing all the incoming requests and sending them to live agent.
The whole communication between the user and the agent happens through WIS.

WIS Cache The WIS cache stores user session info that is necessary for the communication
between user and the agent.

Chat Server The live agent will be conversing with the user through Chat Server.

21 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Control Flow for Chat Escalation

A sample interaction flow between ODA, WIS and Chat Server will follow the following steps:

1. User requests chat to be escalated to a live agent.

2. ODA instance initiates a POST request using the webhook channel with the necessary payload, requesting
chat with a live agent. If the user is already in conversation with the agent, payload will contain the user text
message.

3. WIS processes the request, interprets the incoming chat, and extracts user info from the payload.

4. Stores userId and webhook channel details in the WIS cache.

5. Transforms the payload to a Chat Server compatible payload.

6. Sends the POST request to the Chat Server.

7. Receives POST request from Chat Server, which contains information about the agent session including
acceptance or denial of chat.

8. Retrieves user info from WIS cache using the userId.

9. Maps the userId with the sessionId in the WIS cache, that enables conversations to be directed to the right
user and agent in ODA and Chat Server respectively.

10. Transforms the received payload to the ODA webhook channel compatible payload.

11. Sends the agent’s response (transformed payload) to ODA instance.

12. Displays the message to user.

Webhook Deployment

The WIS can be deployed using two possible infrastructures:

1. Deployment on Oracle Cloud Infrastructure

22 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

 2. On-Premise Deployment

Architecture Components:

Component Description

ODA ODA instance which contains the skill from which the transfer is initiated.

WIS Servers Managed by the Oracle Kubernetes Engine (OKE). These lie in a private subnet,
only accessible by resources within the VCN.

API Gateway Used to enable communication with the Chat Server APIs.

Oracle Kubernetes Engine
(OKE)

Responsible for autoscaling the WIS servers, depending on load requirements.

Load Balancer Responsible for distributing the load between the pods managed by OKE.

Webhook channel Webhook configured by ODA instance to communicate with the WIS to transfer
messages.

Agent API APIs for agent communication.

23 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

6. Skill Security

Chatbots created with ODA integrate with remote back-end systems through custom components that invoke
REST services. For custom components to access protected REST endpoints, some sort of authorization must be
passed in the request header.

OAuth 2.0 (Open Authorization) is the standard protocol for token-based authorization. It allows clients (such as
chatbots) to access protected resources on behalf of a resource owner without passing the resource owner's
credentials with the request. The two most commonly used authorization options in OAuth2 are:

• Client Credential Flow - Using the Client Credential Flow, clients like ODA obtain authorization to protected
resource through a shared client Id and client secret. This authorization flow type can be handled using a
custom component only.

• Authorization Code Flow - Authorization Code Flow requires a bot user to authorize a resource access. At
first, client requests the authorization token for which it needs the user to login to the remote identity
provider and to grant the requested access (defined as "scope"). With the authorization token, using a custom
component, ODA then requests a second endpoint to exchange the authorization token. The access token
then needs to be sent with each access request to the protected resource.

Security Components

• System.OAuth2AccountLink

Use this component to obtain an OAuth2 user access token (grant type Authorization Code) for resources that are
secured by Oracle Identity Cloud Service (IDCS), Oracle Access Manager (OAM), Microsoft identity platform, or
Google OAuth 2.0 authorization. This component completes all the steps for the 3-legged OAuth2 flow and
returns the OAuth2 access token.

• System.OAuthAccountLink

Use this component to obtain the authorization code for services that are secured by the authorization code grant
flow, such as LinkedIn, Twitter, Google, or Microsoft. The skill’s custom components can exchange the
authorization code for an access token, which they then use to invoke the end service.

• System.OAuth2Client

Use this component to obtain an OAuth2 access token of grant type Client Credentials. That is, you use it to get
an access token that's based on the client's credentials, and not the user's name and password. You can use this
component to get a token that enables access to client resources that are protected by Oracle Identity Cloud
Service or Oracle Access Manager (OAM).

24 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

ODA OAuth 2.0 Security Flow
When user initiates the conversation with ODA through channels, such as SMS, ODA routes the request to skill
bot, if skill bot has the System.OAuth2AccountLink component configured. ODA will check whether user is
already logged in with a valid access token. If not, it will send back OAuth login link for the user to login.

OAuth Components

Terms Meaning Example
Resource Owner Person or application that owns the data

that is to be shared.
Bot End Users

• Employees
• End Customers

Resource Server Server hosting the resources Siebel Server
Client Application Application requesting access to the

resources stored on the resource server.
Registered with IDCS or any third party IDP;
ODA configured as Client with in IDP

Authorization
Server

Server authorizing the client app to
access the resources of the resource
owner.

IDCS or any third party IDP

Siebel OAuth Enablement
Siebel supports all OAuth 2.0 authentication flows. Siebel Object Manager must be configured for SSO when
OAuth is enabled. The required certificates from the OAuth server must be installed in the environment where the
Siebel REST API is hosted.

Following table describes Siebel Application Interface profile configuration parameters:

Parameter Description Value
SingleSignOn TRUE
Authentication
Type

Specify the authentication type that the Siebel Application
Interface nodes accept for REST inbound authentication. The
options are:
• Basic Authentication
• Single Sign-On

OAuth

25 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Parameter Description Value
• OAuth

Trust Token Specify the trust token, which will be used as the password
when Single Sign-On or OAuth is enabled. The specified value
is passed as the Password parameter to a custom security
adapter, if the value corresponds to the value of the Trust
Token parameter defined for the custom security adapter.

same as the security
adapter TrustToken

Authentication
URL

Specify the URL to use for REST inbound authentication
(OAuth). It is recommended that you specify the
URL using the HTTPS format.

URL of the OAuth
Service Provider end
point for Access
Token validation

Secure Channel This option applies only for the OAuth authentication type as
follows:
• Select this check box only when you have already

imported the Authentication URL’s CA certificate into the
Application Interface truststore.

• Deselect this check box when the Authentication URL’s CA
certificate is not available in the Application Interface
truststore. In this case, the Application Interface trusts all
certificates while calling the Authentication URL over
HTTPS.

Siebel Settings

1. Enable DB authentication with SSO for EAI OM

a. Connect to the server manager and set the following parameter values for the EAI:
SecAdptMode=DBSSO and SecAdptName=DBSecAdpt.

• change param SecAdptName=DBSecAdpt for component EAIObjMgr_enu server <server name>

• change param SecAdptMode=DBSSO for component EAIObjMgr_enu server<server name>

b. Add the database adapter advanced subsystem parameter values described in the following table for
SSO support. These parameters are required in addition to other existing parameters

• change param DBSecAdpt_SharedDBUsername=SADMIN for named subsystem DBSecAdpt

• change param DBSecAdpt_SharedDBPassword=SADMIN for named subsystem DBSecAdpt

• change param DBSecAdpt_SingleSignOn=True for named subsystem DBSecAdpt

• change param DBSecAdpt_TrustToken=IDCSSIEBEL for named subsystem DBSecAdpt

2. On SMC, change the following settings and deploy

a. AI Profile → General Section → Rest Inbound Authentication
Anonymous UserName = guestcst
Anonymous Password = guestcst
AuthenticationType = OAuth
Authentication URL = Append base64-encoded[client-id:client-secret-string] to IDC introspect URL

ex https://<idcs_server>/oauth2/v1/introspect?YzFjNDViM2I4MjM2NGI0MWFlZGNlYjc0YjNiNTIzZ
WU6OTg3NDgyNGUtNjM5NC00YWRjLTg2NWEtMDAwZTliZGNmYTJm

26 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Trust Token = IDCSSIEBEL
Session Timeout = 120

 Secure Channel is not selected

b. Under Applications → For EAI

Anonymous User Name: guestcst

Anonymous User Password: IDCSSSIEBEL

 Keep the rest of the settings as default.

3. For Client credentials, the User Id matching with ClientID should be created in Siebel.

Refer Siebel Security Guide and Siebel Rest API guide for OAuth 2.0 authentication flows.

27 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Authorization Flow

Authorization code flow

28 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Siebot Authorization Types
Access through User SSO

• Intent is configured with System.OAuth2AccountLink

• ODA directs user to configured OAuth browser login link for user to login

• Once Authentication is successful, user can continue the conversation

• The token obtained through authentication is sent to Siebel API for any resource requests

Anonymous Access with Client Token

• Intent is configured with System.OAuth2Client

• ODA obtains token for the Siebel client registered in IDCS without any inputs from user

• The token obtained is sent to Siebel API for any resource requests

Channel OTP Verification

• Intent is configured with System.OAuth2Client

• ODA dialog flow first verifies the channel specific OTP to authenticate the user.

• ODA then obtains token for the Siebel client registered in IDCS without any further inputs from user

• The token obtained is sent to Siebel API for any resource requests

29 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

IDCS Configuration

To configure IDCS, follow the below steps:

1. Login to IDCS admin console.

2. Go to Applications tab and click on "Add" and select "Confidential Application".

3. In the "Details" section, provide Name and Description and click on next.

4. Select "Configure this application as a client now ".

5. Select the following option in Authorization section and click on Next:

a. Allowed Grant Types: Resource Owner, Client Credentials, Refresh Token, Authorization Code, Implicit

b. Redirect URL: <ODA Callback URL>

c. Allowed Operations: Introspect, On Behalf Of

6. Select "Configure this application as resource server now" and provide "Primary Audience" as "SEBL".

7. Click on "Add" button next to Scope and provide following scope:

a. service

b. data

8. Click on Next -> "Skip for Later" -> Next -> Finish. Click on Save.

9. Go to Applications again and drill down on your application. In the Configuration tab, click on Client
Configurations. In that section under Resources, click on Add Scope.

10. From the popup that comes up, select your application and select both the scopes i.e. service and data, and
Click Add.

11. In the Users tab, assign Users. If the user is not present, create a new user in Users section and then assign it
to this application.

12. Activate this application.

13. Note down the client id and client secret from Configurations tab.

30 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

Connecting to Siebel on-premise

Security

• API Gateway endpoint is protected by token validation using default IDCS instance as the OAuth Auth

server.

• ODA uses System.OAuth2Client Builtin component to retrieve Oauth access token from IDCS.

• ODA custom component passes the Oauth access token in its request to API gateway endpoint.

• API gateway strips off the Auth header after token is validated against IDCS.

• API gateway injects required basic auth or access-key credentials in the outbound request to on-prem

backend endpoint.

31 Technical Brief / Siebel CRM - ODA Integration Approach

 Copyright © 2021, Oracle and/or its affiliates / Public

7. Learn More

Below are some references that will further help you to develop your own Skills and use them in DA.

Using Oracle Digital Assistant: https://docs.oracle.com/en/cloud/paas/digital-assistant/use-
chatbot/overview-digital-assistants-and-skills.html

Build Your First Skill With Oracle Digital Assistant: https://docs.oracle.com/en/cloud/paas/digital-
assistant/tutorial-skill/index.html#create-order

Integrating Oracle Digital Assistant (ODA) with an Agent System: https://github.com/oracle/cloud-asset-
oda-agent-handover

Siebel REST API Guide: https://docs.oracle.com/cd/F26413_21/books/RestAPI/index.html

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2021, Oracle and/or its affiliates. All rights reserved. This document is
provided for information purposes only, and the contents hereof are subject to
change without notice. This document is not warranted to be error-free, nor subject
to any other warranties or conditions, whether expressed orally or implied in law,
including implied warranties and conditions of merchantability or fitness for a
particular purpose. We specifically disclaim any liability with respect to this
document, and no contractual obligations are formed either directly or indirectly by
this document. This document may not be reproduced or transmitted in any form or
by any means, electronic or mechanical, for any purpose, without our prior written
permission.

This device has not been authorized as required by the rules of the Federal
Communications Commission. This device is not, and may not be, offered for sale or
lease, or sold or leased, until authorization is obtained.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks
or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The
Open Group. 0120

Disclaimer: If you are unsure whether your data sheet needs a disclaimer, read the revenue
recognition policy. If you have further questions about your content and the disclaimer
requirements, e-mail REVREC_US@oracle.com.

