
DESIGN PATTERNS

The Proxy Pattern
A good solution when you need to enable or
mediate access to objects, either local or
remote
by Ian Darwin

A proxy is a stand-in for something else. Corporate shareholders appoint
proxies to vote for them at business meetings. Climate scientists use
averaged temperature as a proxy for having a thermometer in every
square meter of the world. Developers use proxies to substitute for
objects that are remote, require protection, or otherwise need mediated
access.

The basic approach is that a client object requests a service object of a
given type from a third party such as a factory, and what it gets is a proxy
object that can stand in for, and usually pass control to, the service
object. This arrangement requires that the proxy implement the same
interface or extend the same class as the one that was requested, so the
proxy can be assigned to a variable of the correct type. For this set of
examples, I’ll use a simple “inspirational quote of the day”

 interface with just two methods, which are used as
follows:

All the code samples for this article are in my GitHub repository.

In an application, I might use a factory method to obtain the instance of
the server, instead of calling the constructor directly. This step allows
more flexibility, and it removes tight coupling or dependence of the client
code on a particular class implementing the interface.

The factory method might simply instantiate a fixed class. But more likely,
it will use some configuration to determine which implementation class to
create (see the Factory patterns), or it will wrap the known
implementation class in a proxy object. I say “wrap” advisedly, because
the proxy’s main job is to mediate access to the target, so it must
maintain a reference to the target.

For these demos, I will use a simple logging proxy, because it’s easy to
see what the code is doing. The implementation of the

 method might create and return a subclass of the
existing implementation class, overriding its
methods and adding some functionality to the original. This example is
short enough that I just use an anonymous class.

QuoteServiceQuoteService

// Normal use// Normal use
System.out.println("The quote of the day is: " + quoSystem.out.println("The quote of the day is: " + quo

// Admin use// Admin use
quoteServer.addQuote("Only the educated are free -- quoteServer.addQuote("Only the educated are free --

QuoteService x = getQuoteService(); // Not = new QuoQuoteService x = getQuoteService(); // Not = new Quo

getQuoteServicegetQuoteService

QuoteServerImplQuoteServerImpl

The Proxy Pattern

Dynamic Proxy

Proxies for Remote Access

Proxies in Enterprise Java

Proxy Versus Decorator

Conclusion

Also in This Issue

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/design-patterns-2
https://github.com/IanDarwin/patterns-demos/tree/master/src/main/java/structure/proxy
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

This example shows a logging proxy where I know the class is being
proxied. But it is, in fact, tightly coupled to the target class. What if you
want to apply proxying to a variety of classes?

Dynamic Proxy

Java SE provides a mechanism called dynamic proxy, which allows you
to synthetically create a proxy for a list of arbitrary interfaces—that is, you
can set up a proxy at runtime instead of at compile time. This capability
has been around practically forever, since the days of Java 1.3. It does
require you to create an object that subclasses .
This object will act as the go-between from the caller to the objects being
proxied. You can think of the as basically being
the proxy. In fact, if you print out the call stack in the target, using either a
debugger or , you
will see that other than some reflection classes, the overall structure is
basically the same as in Figure 1.

Figure 1. Proxy pattern

The class contains a convenience method,

, which, as the name says, gets you a proxy instance for the interfaces
given as class descriptors and the given . The

 interface that you must implement has only one
method in it, :

The arguments passed to your ’s
method are the proxy object (which the method often doesn’t need, but
it’s there for the times you do), a
descriptor for the method being called, and the list of arguments being
passed to that method. Because the API has no way of knowing ahead of
time what kinds of objects you will be using, the parameters, the return,
and the clause are written to be as general as possible, using

 for the first two and for the third.

public static QuoteServer getQuoteServer() {public static QuoteServer getQuoteServer() {
 final QuoteServer target = new QuoteServerImpl(final QuoteServer target = new QuoteServerImpl(
 QuoteServer proxy = new QuoteServer() { QuoteServer proxy = new QuoteServer() {
 public String getQuote() { public String getQuote() {
 System.out.println("Calling getQuote()" System.out.println("Calling getQuote()"
 return target.getQuote(); return target.getQuote();
 } }
 public void addQuote(String newQuote) { public void addQuote(String newQuote) {
 System.out.println("Calling addQuote()" System.out.println("Calling addQuote()"
 target.addQuote(newQuote); target.addQuote(newQuote);
 } }
 }; };
 return proxy; return proxy;
}}

InvocationHandlerInvocationHandler

InvocationHandlerInvocationHandler

new RuntimeException().printStackTrace()new RuntimeException().printStackTrace()

InvocationHandlerInvocationHandler

newProxyInstance(ClassLoader, Class<?>[],newProxyInstance(ClassLoader, Class<?>[],

InvocationHandler)InvocationHandler)

InvocationHandlerInvocationHandler

InvocationHandlerInvocationHandler

invokeinvoke

public interface InvocationHandler {public interface InvocationHandler {
 abstract Object invoke(Object obj, abstract Object invoke(Object obj,
 Method method, Object[] args) throws Throwable; Method method, Object[] args) throws Throwable;
}}

InvocationHandlerInvocationHandler invoke()invoke()

java.lang.reflect.Methodjava.lang.reflect.Method

throwsthrows

ObjectObject ThrowableThrowable

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Proxy.html

Note especially that unless there is a reason not to, the
method of the - must do the actual invocation of
the real target. This is the call to in the middle of my
demo handler’s method—the same name and the same
arguments, minus the method descriptor itself, which is the object on
which you call .

Here is a version of the logging proxy done as an :

Here is the method for the client program:

If you examine the object returned from this method by calling
 on it, you can see that it is a synthetic class,

as indicated by its generated name:

In my online example of dynamic proxy, in my version of the
, I added a few lines as a proxy for real security

protection. In place of the code comment “could put security checking
here,” I wrote this:

The net result of all this coding is that we have a proxy made up of the
dynamic proxy (class in this example) and the

. The dynamic proxy is generated for us, and the
 doesn’t need to know anything about the actual

target, although in more complicated cases it might.

invoke()invoke()

InvocationInvocation HandlerHandler

method.invoke()method.invoke()

invoke()invoke()

invoke()invoke()

InvocationHandlerInvocationHandler

class MyInvocationHandler implements InvocationHandlclass MyInvocationHandler implements InvocationHandl

 private Object target; private Object target;

 public MyInvocationHandler(Object target) { public MyInvocationHandler(Object target) {
 super(); super();
 this.target = target; this.target = target;
 } }

 /** /**
 * Method that is called for every call into the * Method that is called for every call into the
 * this must invoke the method on the real objec * this must invoke the method on the real objec
 * This method demonstrates both logging and sec * This method demonstrates both logging and sec
 */ */
 public Object invoke(Object proxy, Method method public Object invoke(Object proxy, Method method
 throws Throwable { throws Throwable {
 String name = method.getName() + "()"; String name = method.getName() + "()";
 System.out.println("Proxy got request for " System.out.println("Proxy got request for "
 // Could put security checking here // Could put security checking here
 Object ret = method.invoke(target, argList) Object ret = method.invoke(target, argList)
 System.out.println("Proxy returned from " + System.out.println("Proxy returned from " +
 return ret; return ret;
 } }
}}

getQuoteServer()getQuoteServer()

// from DynamicProxyDemo.java// from DynamicProxyDemo.java

public static QuoteServer getQuoteServer() {public static QuoteServer getQuoteServer() {
 QuoteServer target = new QuoteServerImpl(); QuoteServer target = new QuoteServerImpl();
 InvocationHandler handler = new MyInvocationHand InvocationHandler handler = new MyInvocationHand
 return (QuoteServer) Proxy.newProxyInstance(return (QuoteServer) Proxy.newProxyInstance(
 QuoteServer.class.getClassLoader(), QuoteServer.class.getClassLoader(),
 new Class[] { QuoteServer.class }, handler) new Class[] { QuoteServer.class }, handler)
}}

getClass().getName()getClass().getName()

QuoteServer object is com.sun.proxy.$Proxy0QuoteServer object is com.sun.proxy.$Proxy0

InvocationHandlerInvocationHandler

final String userName = System.getProperty("user.namfinal String userName = System.getProperty("user.nam
if (name.startsWith("add") && !userName.equals("ian"if (name.startsWith("add") && !userName.equals("ian"
 throw new SecurityException(throw new SecurityException(
 "User " + userName + " not allowed to add qu "User " + userName + " not allowed to add qu

$Proxy0$Proxy0

InvocationHandlerInvocationHandler

InvocationHandlerInvocationHandler

https://github.com/IanDarwin/patterns-demos/blob/master/src/main/java/structure/proxy/DynamicProxyDemo.java

Proxies for Remote Access

Here’s one last example from standard APIs: remote access. There’s a
general term, remote procedure call (RPC), for which there are dozens of
examples throughout the history of networked computing. The basic idea
is that after some setup (such as getting an object from a factory), you
invoke an object by using what looks like a local method call, but the
object is actually a network proxy that communicates over the network to
a peer proxy on the server side, which in turn calls the real service; and
the return value is passed back over the same channel. Older examples
of RPC include Sun RPC, DCE RPC, and Microsoft Windows RPC.
Standard Java APIs that use the RPC paradigm include RMI, CORBA
(which was removed from Java 11), JAX-RS, and JAX-WS.

There is not room here to give a full working example, but see my RMI
tutorial online for an example.

Proxies in Enterprise Java

The dynamic proxy mechanism works nicely for situations where you
know the class or classes to be proxied; however, the

 itself does not need to be written in a target-
specific way. There are cases where you might not know the target class
in advance, but you still want to provide services to it. A common
example from enterprise Java is the provision of transactional control to
business-tier objects controlling data access objects. Both Java EE (now
Jakarta) and the Spring Framework provide annotations that are normally
placed on business-tier classes and cause a proxy object to begin or join
a transaction when a given method begins executing. The proxy will
either commit the transaction when the method returns normally or roll it
back if the method returns abnormally (for example, by throwing an
exception). Here is some pseudocode for a persistent shopping cart
using this approach:

The important thing to note is that, in this scheme, you don’t need to write
the proxy or even know its class name for common operations such as
transactional control, because these common proxies are provided by the
enterprise framework (CDI/EJB or Spring) in response to the annotations.
Nor do you need to modify your code to use the proxy (other than
annotating it), which means you don’t have any runtime dependencies.
This design makes the services and data layers easier to unit test (unit
testing, after all, means testing each unit in isolation).

However, CDI and Spring give you the option to provide additional
proxies of your own. For example, the CDI mechanism supports a form of
proxying that uses that can be applied to enterprise
components via annotations (usually) or XML configuration.

Here is how a CDI implementation of the logging interceptor might be
used in a business method (the curly braces around the class descriptor
remind you that it’s an array, in case you want to apply multiple
interceptors to the same method). This annotation also can be applied at
the class level.

InvocationHandlerInvocationHandler

public class ShoppingService {public class ShoppingService {
 private ShoppingCart cart; private ShoppingCart cart;
 private Dao dao; private Dao dao;

 @Transactional(TransactionType.REQUIRED) @Transactional(TransactionType.REQUIRED)
 public void addToCart(Product p) { public void addToCart(Product p) {
 // do validation/calculation work here // do validation/calculation work here
 dao.saveCart(cart); dao.saveCart(cart);
 } }

}}

InterceptorsInterceptors

@Interceptors({CdiLoggingInterceptor.class})@Interceptors({CdiLoggingInterceptor.class})
public void validateCredit() {public void validateCredit() {

https://medium.com/@idarwin/distributed-java-rmi-tutorial-b1347ed5cde0

Here is the code for the logging interceptor or proxy:

Unlike the dynamic proxy API, in this code a single parameter, an
, is passed. It contains the method descriptor, the

arguments, and so on. The has a
call that returns the standard descriptor and a

 call that provides the argument list if you want to
examine or modify it. The and methods aren’t shown
here but are in the online source code. The context method
takes the place of the method.

You might think this approach is a Decorator rather than a Proxy because
you are naming the implementation class. However, as an advanced
topic, CDI does allow you to use an interface in the
and resolve the implementation class at runtime by using other
annotations. See the official documentation for more details on the

 package.

Proxy Versus Decorator

As I mentioned in a previous article on the Decorator pattern, Proxy and
Decorator both allow you to wrap extra functionality around an object, so
the implementation code can look similar. Although there is often overlap,
the primary differences are:

Conclusion

Proxy is a good pattern when you need to control access to objects for
any purpose, and it can be used for a wide variety of purposes, including
enforcing security restrictions, auditing method calls and parameters,
hiding the complexity of access (such as with remote objects), or
transparently adding behavior (such as logging).

Also in This Issue

 // do some work here // do some work here
}}

import javax.interceptor.AroundInvoke;import javax.interceptor.AroundInvoke;
import javax.interceptor.Interceptor;import javax.interceptor.Interceptor;
import javax.interceptor.InvocationContext;import javax.interceptor.InvocationContext;

/**/**
 * A logging interceptor for CDI. * A logging interceptor for CDI.
 */ */
@Interceptor@Interceptor
public class CdiLoggingInterceptor {public class CdiLoggingInterceptor {

 // @AroundInvoke applies to business method; the // @AroundInvoke applies to business method; the
 // also annotations for constructors, timeouts, // also annotations for constructors, timeouts,
 @AroundInvoke @AroundInvoke
 public Object log(InvocationContext ctx) throws public Object log(InvocationContext ctx) throws
 Object[] parameters = ctx.getParameters(); Object[] parameters = ctx.getParameters();
 String firstArg = (parameters.length > 0) ? String firstArg = (parameters.length > 0) ?
 "First is: " + formatArg(parameters[0]) "First is: " + formatArg(parameters[0])
 String methodName = ctx.getMethod().getName String methodName = ctx.getMethod().getName
 log(String.format("About to call %s with %d log(String.format("About to call %s with %d
 methodName, parameters.length, first methodName, parameters.length, first
 Object o = ctx.proceed(); // The actual ca Object o = ctx.proceed(); // The actual ca
 log("Returned " + format(o) + " from method log("Returned " + format(o) + " from method
 return o; return o;
 } }

}}

InvocationContextInvocationContext

InvocationContextInvocationContext getMethod()getMethod()

MethodMethod

getParameters()getParameters()

format()format() log()log()

proceed()proceed()

invoke()invoke()

@Interceptors@Interceptors

javax.interceptorjavax.interceptor

Proxy is primarily about mediating access, whereas Decorator is
about adding functionality.



Proxy is normally hidden from the client (by some kind of creational
method), but the client is aware that it is using a Decorator because
it must do so explicitly.



https://docs.oracle.com/javaee/7/api/javax/interceptor/package-summary.html#package.description
https://blogs.oracle.com/javamagazine/the-decorator-pattern-in-depth

Ian Darwin
Ian Darwin (@Ian_Darwin) is a Java Champion who
has done all kinds of development, from mainframe
applications and desktop publishing applications for
UNIX and Windows, to a desktop database
application in Java, to healthcare apps in Java for
Android. He’s the author of Java Cookbook and
Android Cookbook (both from O’Reilly). He has also
written a few courses and taught many at Learning
Tree International.

Share this Page

Javalin: A Simple, Modern Web Server Framework
Building Microservices with Micronaut
Helidon: A Simple Cloud Native Framework
Loop Unrolling
Quiz Yourself
Size Still Matters
Book Review: Modern Java in Action



Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/ian-darwin
https://blogs.oracle.com/javamagazine/ian-darwin
https://blogs.oracle.com/javamagazine/javalin-a-simple-modern-web-server-framework
https://blogs.oracle.com/javamagazine/building-microservices-with-micronaut
https://blogs.oracle.com/javamagazine/helidon-a-simple-cloud-native-framework
https://blogs.oracle.com/javamagazine/loop-unrolling
https://blogs.oracle.com/javamagazine/quiz-yourself
https://blogs.oracle.com/javamagazine/size-still-matters
https://blogs.oracle.com/javamagazine/modern-java-in-action
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

