
TESTING

Refactoring Java, Part 1:
Driving agile development with
test-driven development
Refactoring makes your organization’s
code simpler, which means fewer bugs
and easier maintenance.
by Mohamed Taman

October 9, 2020

Refactoring is about enhancing the consistency of the code by
simplifying the code. Simpler code facilitates versatility and the
ability to rapidly change the code, introduce new functionality,
and meet the organization’s ever-changing needs.

In this series, I’ll teach refactoring by practicing refactoring. The
goal is to write and refactor code, optimize it, and add new
features along the way. Well-factored code helps developers
solve problems more quickly and develop and produce high-
quality software products that customers enjoy quickly.

What are we going to learn?

This hands-on kata-based series of articles teaches refactoring
basics, tailored to agile development. (I’ll describe what a kata is
shortly.) This first article will help set up a test-driven
development (TDD) environment and walk through basic
refactoring techniques, such as variable renaming, extracting
methods, and inlining methods.

The second article will explain how legacy code can be
stabilized by addressing outstanding technical debt—
inefficiencies and errors introduced due to sloppy and careless
programming.

The third article will demonstrate refactoring to simplify code,
remove duplication, and build more reusable objects. You’ll see
how refactoring complements an agile workflow by

Refactoring Java, Part 1:
Driving agile development with
test-driven development

What are we going to learn?

Step 1: Setting up the new
code kata

Step 2: Setting up the TDD
testing environment

Step 3: First refactoring—
renaming a variable

Step 4: A series of
microrefactorings

Step 5: Adding new single-digit
Roman numerals cases

Step 6: Continue solving the
code kata

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/testing-3
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

demonstrating how to add a new feature to the simplified
codebase quickly.

Let’s start with some basic definitions and concepts.

What is refactoring? Refactoring is your code improvement
process. The goal of refactoring is to improve the quality and to
encourage the modification of your software product. Refactoring
makes the code simpler. If you have fewer code lines, you will
have fewer potential bugs.

Two principles of agile software development applicable here are
simplicity and technical excellence:

Therefore, a well-factored codebase provides the flexibility to
solve business problems faster and to build and deliver high-
quality software products quickly—products that people love.

Quality first: Test-driven development. Rigorous testing is the
foundation of refactoring. Without well-defined test cases that
verify the correct behavior of your code, you cannot be sure that
refactoring hasn’t altered the code’s external behavior. The
refactoring process is about changing the internal structure of
your code without affecting its external behavior.

This article will follow the TDD practice of writing tests, where I’ll
write automated tests to prove the correct behavior of the code.
When I write new code, the TDD will guide writing the valid code.
And when I refactor, that is, improve the current code, TDD gives
guide rails to make it safe.

When writing new features, TDD is an iterative process or a
three-step dance—red, green, refactor:

Repeat these steps over and over until we’re satisfied with the
new feature, as shown in Figure 1.

Simpler code enables technical agility—the ability to
quickly change the code to add new functionality, for
example.



Technical agility enables business agility—the opportunity
to change our tech products easily to satisfy the ever-
changing needs of our users and other stakeholders.



Write a new test for that new feature; of course, the code
will fail the test because the feature doesn’t work yet. TDD
says the test has gone red.



Write Java code to implement the new feature until the
new test passes. All the other tests must continue passing
as well. This means the tests have gone green.



Clean up and improve the production code by refactoring
the code, which results in better code. All the tests must
continue to pass.



Figure 1. The iterative dance of test-driven development

For a deeper look into TDD, you can read my article, “Test-
driven development: Really, it’s a design technique.”

Learning with code katas. A code kata is a technique for
learning new coding skills. In martial arts, kata is a series of
movements that you do regularly. You repeat your actions so
many times that the body builds muscle memory. Without
thinking about them, you will execute the moves.

A code kata is like that but for a coding problem: Take a simple
problem and follow a sequence of moves to solve it. Repeat the
series of moves so many times that they become muscle
memory, so your body and brain will just know what to do the
next time they encounter a similar coding problem.

The sequence of moves I’ll show you here is the red-green-
refactor loop of test-driven development. You’ll repeat the red-
green-refactor loop so often that you’ll build the muscle memory
for good refactoring. The goal is that when you write real
production code, you won’t need to think about refactoring; you’ll
just do it automatically.

What should you know? To get the most from these articles,
you should be familiar with writing code. Refactoring is
applicable in any programming language. I will do all the
development and refactoring in Java, but you don’t have to be a
Java guru to follow along with me.

You can get the full source code files from my GitHub repository
or clone it:

If you would like to follow along with me without coding, simply
follow the steps in this article. But if you would like to navigate
the code, then each article is divided into steps, and in each
step, I have a git commit for each TDD red-green-refactor
change. So, when navigating commits, you can notice the
differences and the refactoring that is done toward the final kata
requirements.

~$ git clone https://github.com/mohamed-taman~$ git clone https://github.com/mohamed-taman

https://www.infoq.com/articles/test-driven-design-java/
https://github.com/mohamed-taman/Agile-Software-Dev-Refactoring

To get the most value, please fire up your favorite IDE and write
and refactor code along with the article instructions. To do that,
you’ll need the following:

Now we can set up our first exercise, which is to write software
that converts Roman numerals to Arabic numerals. Arabic
numerals are the numbers that we use every day, such as 1, 2,
and 3. Roman numerals are numbers written with letters, such
as I, V, and X. Here’s the user story for this kata: As a
schoolteacher, I want a tool that converts Roman numerals to
Arabic numerals, so my students can check their homework
grades quickly.

Step 1: Setting up the new code kata

In this example, I won’t go deep for the complete requirements.
Instead, I’ll present a few simple cases to lay out the more
critical concepts and techniques of the TDD refactoring process.
So, don’t judge the process by this simple example; there are
wealthy concepts, tips, and tricks coming next.

If you want to know more about the complete Roman numerals
example with TDD, my article referenced above goes into
details.

To get started on the kata, follow these instructions—and
remember that although I’m using IntelliJ, you can use any IDE:

1. Launch IntelliJ and create a new project. On the left side,
select and click .

2. Because this is the Roman numerals kata, for type
something like , for type

, and for type
. Then click .

3. In the bottom right corner of the screen, you’ll see a
window that says, “

.” Click
.

4. In the project navigator, open , open the
source folder, and then open the folder. Right-
click the folder and click . The package
name matches the Maven Groupid. Type

 and click .

5. Right-click the package
and select . For the name of the new
class, type and click

.

The latest Java Development Kit; I will use Java SE 15.

Any IDE you want; I will use JUnit for automated testing,
and I’ll use code coverage tools.



IntelliJ IDEA Ultimate edition; I’ll use this edition in the
articles because JUnit and code coverage tools are built in.



MavenMaven nextnext

NameName

RomanNumeralsRomanNumerals GroupidGroupid

com.siriusxi.javamag.katacom.siriusxi.javamag.kata ArtifactidArtifactid

RomanNumerals-ConverterRomanNumerals-Converter finishfinish

Maven projects need to be importedMaven projects need to be imported

enable auto-importenable auto-import

RomanNumeralsRomanNumerals

(src)(src) testtest

javajava new packagenew package

com.siriusxi.javamag.katacom.siriusxi.javamag.kata okayokay

com.siriusxi.javamag.katacom.siriusxi.javamag.kata

new Java classnew Java class

RomanNumeralsConverterTestsRomanNumeralsConverterTests

okayokay

https://www.oracle.com/java/technologies/javase-jdk15-downloads.html
https://junit.org/junit5/
https://www.jetbrains.com/idea/

You’ll notice that IntelliJ autogenerates the first few lines of code
(see Figure 2). There are no executable code lines, which
means this is the perfect piece of software: The zero lines of
code have zero bugs.

Figure 2. The IDE autogenerates zero lines of code, which had zero bugs.

The goal through the rest of the kata is to keep the code as
close to this ideal as possible. You want to have the fewest lines
of code that you can, because that way, you will have the fewest
bugs and the most technical agility and business agility.

Step 2: Setting up the TDD testing environment

Let’s set up JUnit as the test framework to proceed with the kata
at hand. Remember the red-green-refactor three-step dance?
First, we will create a failing test that ensures JUnit exists and
works properly:

1. In your code editor, at line 4, type , and then press
Enter.

2. Continue typing the method name,
, and a left squiggly

bracket, and then press Enter.

3. And at line 6, type .

Notice all the red on the screen; this code is so red that it will not
even compile. The problem here is that the project is not
configured yet to use the JUnit framework. To resolve this
quickly so we can focus more on solving the kata, I will ask
IntelliJ to fix the configuration for us.

1. Move the cursor to line 4 on top of the word , and
then press on macOS (on
Windows) and select to add to the classpath.
Behind the scenes, IntelliJ adds JUnit to the project
configuration. Also notice at line 3 that the
statements appeared.

2. Notice that at line 8 is still red. Press
 as IntelliJ suggests, and the

statements appear at line 5. Also, notice that all the red has
disappeared. This code can now compile.

3. Now to run the unit test: Right-click
 and select

@Test@Test

public void isJunitWorking()public void isJunitWorking()

assertTrue(false)assertTrue(false)

@Test@Test

Option+EnterOption+Enter alt+enteralt+enter

JUnit 5.4JUnit 5.4

importimport

assertTrueassertTrue

Option+EnterOption+Enter importimport

RomanNumeralsConverterTestsRomanNumeralsConverterTests

. In the JUnit
window at the bottom of the screen, see that

 has failed. This is perfect. We have a
failing test. This is the first step of the red-green-refactor
dance in TDD.

4. The goal is to write the least amount of code to make this
test go green. At line 10, change the word to .

5. Rerun the tests and notice that everything has gone green.
You are now at the green part of the red-green-refactor
dance. Look at the code. It looks like there’s nothing to
refactor here—that is, there’s no room for improvement—so
you are done (see Figure 3).

Figure 3. The Java code doesn’t do anything, but at least it passes its first

unit test.

By the way, I let IntelliJ do the project configuration work for me.
Modern IDEs are good at automating certain kinds of work, such
as project configuration. As we proceed through the kata, I’ll rely
on the IDE as much as possible to automate project
configuration and similar kinds of work.

Step 3: First refactoring—renaming a variable

To solve the Roman numerals kata, I’ll start with the simplest test
case—single-digit Roman numerals. For example, the Roman
numeral I converts to Arabic numeral 1, V means 5, X means 10,
and so on. We will start to solve the problem by writing our first
test of the behavior.

At line 11, press twice. Type , press , and
then type .

TDD will guide you toward architecting the solution to the
problem. The test you write will guide you toward a solution
code. You are looking for a method that returns an integer. The
method will have a name that’s like “convert.” It will take an input
string, and the input string is the Roman numeral that you want
to convert. Thus, it’ll look something like this:

Run RomanNumeralsConverterTestsRun RomanNumeralsConverterTests

isJunitWorkingisJunitWorking

falsefalse truetrue

enterenter @Test@Test enterenter

public void convertsSingleRomanDigit(){}public void convertsSingleRomanDigit(){}

int arabic = convert("I");int arabic = convert("I");

To finish the test case, type , which is the
expected result of converting the Roman numeral I to an Arabic
integer and the return value from that method:

There’s a lot of red here. This is good. We’re back to the first
step of the red-green-refactor dance. Once again, the code is so
red it won’t even compile. Let’s fix that:

1. Here IntelliJ is offering us a hint. If we press
, it will insert an statement for us at

line 5. So, the will compile.

2. And is red because there is no actual
method in the Java code. Click the red-light icon to get some
suggestions. The is the one we
want. Press a few times to accept all the defaults.

3. Running the tests gives a red result; the code compiles,
but the new test is failing. You are going to write the least
amount of code to make the test go green.

4. Back at line 21, we’ll change this to return one. Rerun the
tests. And it’s all green. It’s time for the third step of the
dance: Are there opportunities to improve the code?

Step 3.1: Code improvement. The first thing I see is the
argument name at line 20. That single letter is not very
descriptive, and that’s not good for long-term maintenance. I will
change that to be more descriptive.

Highlight the , right-click, select , and then select
. We’ll change the name of this argument to be more

descriptive about what it does. Give it a name like
. Press and rerun the tests to make sure

we didn’t break any of the external behavior. We’re still all green.

That’s the first refactoring: I changed the variable’s name to
better reveal the purpose of the variable.

Step 4: A series of microrefactorings

As I look at the code, I see that something else can be improved.
The new method is created in the test class as if it were part of
the test code, and this is not correct. The new method is part of
the solution, so we should move this method into a separate
class. That class should be part of the main area of the source
code and not part of the test area of the source code.

The excellent process that we are going to perform is a series of
refactorings. Sometimes refactoring is large, and that can be
risky, since it might introduce a new defect. Therefore, instead of
doing a single large refactoring, you’ll do a series of smaller
microrefactorings. After each microrefactoring, rerun the test to
make sure nothing broke.

Step 4.1: Change convert() to static. The first microrefactoring
we’ll try is to move the method to its class.

assert equals 1assert equals 1

convertconvert

assertEquals(1, arabic);assertEquals(1, arabic);

Option+EnterOption+Enter importimport

assert equalsassert equals

convertconvert convertconvert

create method convertcreate method convert

enterenter

ii

ii refactorrefactor

renamerename

romanNumeralromanNumeral enterenter

convertconvert

1. Right-click , click and then . Now
IntelliJ suggests that we should first make it static to be able
to move it to its class. So, this is our first microrefactoring.

2. Click , and then click the button to confirm
that this is what we want.

3. Rerun the tests to make sure this didn’t change any
external behavior. Everything is still green, so we’re ready for
the next microrefactoring.

Step 4.2: Move convert() to its own class. The second
microrefactoring will move into its own class.

1. Right-click , , and type the new class’s
fully qualified class name.

2. The class will be in the same package,
. I’ll call the class

; it will be the class with the
solution kata. Click the button and confirm that
this is what you want.

3. Rerun the tests to make sure this didn’t change any
external behavior. Everything is still green, so you’re ready
for the next microrefactoring.

Step 4.3: Move RomanNumeralsConverter to main src
folder. Move the Roman class from the test source code area to
the main source code area. To do that, follow these instructions:

1. Drag the class across the
project navigator, from the test folder to the main
folder. IntelliJ prompts for the package’s name; give it the
same package name, .

Note: IntelliJ defaults to putting the class into the source test
directory, but we want it to go into the source main directory,
so select that instead. Click to put the class into the
correct destination directory.

2. Click . Rerun the tests to make sure this didn’t
change any external behavior. Everything is still green, so
you’re ready for the next microrefactoring.

You have successfully completed three microrefactorings, which
add up to a large-scale refactoring.

Step 5: Adding new single-digit Roman numerals
cases

Let’s continue to solve the kata. The next text cases will be for
the Roman numerals V and X.

1. First, write a test to make sure that V returns 5. Running all
the tests gives you a red test result, as expected.

2. To resolve that, write the least amount of code to make this
case go to green. For example,

convertconvert refactorrefactor movemove

yesyes refactorrefactor

convertconvert

refactorrefactor movemove

com.siriusxi.javamag.katacom.siriusxi.javamag.kata

RomanNumeralsConverterRomanNumeralsConverter

refactorrefactor

RomanNumeralsConverterRomanNumeralsConverter

javajava javajava

com.siriusxi.javamag.katacom.siriusxi.javamag.kata

okayokay

refactorrefactor

if Roman is l then return 1, else return 5.if Roman is l then return 1, else return 5.

 Rerun the tests, and all tests are green. Great. It looks like
there’s nothing to improve here, so let us move to the next
test case.

3. Let’s add another test that goes red. Repeat the previous
steps 1 and 2, but for the new case Roman X:

Run the tests. This test is red
because you have not implemented that solution code yet, so
now write the most straightforward code that will make that
test go green.

4. Add an branch:

Rerun the tests, and they are all green. Now we are at the
refactor step of the red-green-refactor three-step dance.

The first refactoring to tackle is repeated code: DRY, or Don’t
Repeat Yourself. Duplicated code is challenging to maintain over
time, because if you need to make a small change to one of
these repeated code lines, you will have to make that change
over and over; it will slow you down and decrease your technical
agility. Plus, if you miss a change, you could introduce a hard-to-
find defect.

1. Do a refactoring here to inline some of the code. Right-
click on at line 23, click , and or

. This will replace that variable at line
23 with the value that you assigned to it at line 22 and
remove line 22.

2. Click to apply the refactoring. Rerun the tests
to make sure this didn’t change any external behavior.
Everything is still green, so you’re good.

3. Repeat the same steps for lines 20 and 17. For each step,
rerun the tests to make sure you didn’t change any external
behavior.

One last thing: You should beautify this code a little bit by
deleting lines 17 and 18. This won't change any actual code, but
you should rerun the tests anyway. Get into the habit of running
the tests after every change. Everything is still green, so you’re
all set.

Step 6: Continue solving the code kata

I have added all the additional tests and the solution code for all
the single-digit Roman numeral cases. You can complete that
part of the kata yourself, or you can look at the solution code that
I’ve provided.

Let’s move on to the next test case. In Roman numerals, adding
new digits often looks like addition:

assert equals 10. assert equals 10.

else ifelse if

Roman equals v, return 5, else return 10.Roman equals v, return 5, else return 10.

ArabicArabic refactorrefactor inlineinline

option+command+Noption+command+N

refactorrefactor

II is the same thing as 1 plus 1, and in our code, we’ll be
looking to return the value of 2.



III would be the same as 1 plus 1 plus 1, and our code
should return the value of 3.



Now, my examples are obviously simplified, because IV means
4, not 6; a smaller digit to the left means subtraction, not
addition. However, the goal here is to demonstrate TDD and
refactoring, not to master the art of Roman numerals.

That said, I’ll write the first test case for the simple addition:

1. At line 23 press twice, and type
.

And the first assertion will be

.

2. The tests will fail when run. This is perfect; we’re at the red
step of the red-green-refactor loop.

3. Write the least amount of code to make the tests go green.
At line 4, press , and type

. To make
the code compile, put an before on the next line.

4. Run the tests to make sure everything goes green.

Now, this is obviously not the final solution to the problem. This
is a very naive solution; we are only saying if we get the string II,
return 2. We’re not even doing any real addition here. This is
how kata works. The point of the kata is not necessarily to solve
the Roman numeral problem!

The point of the kata is to practice the moves. And the moves
we’re practicing are the red-green-refactor three-step dance of
test-driven development. Going from red to green, we’re going to
write the least amount of code. Let’s run the tests and see if we
get green. Alright, they're all green.

Let’s add more assertions for III and VI. Our next assertions will
follow the same steps:

If you are looking for a complete solution with TDD in practice for
the full Roman to Arabic problem, it’s in the article referenced
earlier, “Test-driven development: Really, it’s a design
technique.”

VI would be the same as 5 plus 1, and our code should
return the value of 6.



enterenter

@Test public void romanNumeralAddition(){}@Test public void romanNumeralAddition(){}

assertEquals(2,assertEquals(2,

RomanNumeralsConverter.convert("II"))RomanNumeralsConverter.convert("II"))

enterenter

if(romanNumeral.equals("II")) return 2if(romanNumeral.equals("II")) return 2

elseelse ifif

 3 and
, which

is 1 plus 1 plus 1. Run the tests, and notice that this test is;
this is good. Write the least amount of code to make that
go green.

Assert EqualsAssert Equals
RomanNumeralsConverter.convert("II")RomanNumeralsConverter.convert("II")

The least amount of code to make that go green will look
like this:

.
Again, it's not the best solution, but the goal is to practice
the moves. Run the tests. And you'll get green.



else if romanNumeral.equals III return 3else if romanNumeral.equals III return 3

Finally, let’s do one more for 6, which is VI in Roman
numerals.



https://www.infoq.com/articles/test-driven-design-java/

Step 6.1: Rearrange the code for ease of next refactoring.
The method is too long to fit on the screen. The title of
the method has scrolled off the top of the screen. I can’t see the
bottom of the method. It’s scrolled off the bottom of the editor.

A couple of microrefactorings will improve this. The first
microrefactoring will be to take the code segment that deals with
the single-digit Roman numerals and move it to the top of the
method.

1. If it’s a single-digit Roman numeral, type that as
. Then do that

single-digit Roman numeral stuff. However, if it’s a multidigit
Roman numeral, then we’ll do the multidigit addition stuff.

2. To do this microrefactoring, manually cut and paste the
code for single-digit Roman numerals. Starting at line 15,
select the code down to line 29, cut that code, and paste it at
line 7. To make the code compile and run successfully, go to
line 29 and delete the dangling .

3. The code will also need a final statement that’s
not connected to an . Delete that last , and we’ll just say

 . Run the tests. They are still green, so this
microrefactoring was successful.

Now, the method is still too long, but we’ve made it easy for the
next microrefactoring.

Step 6.2: Refactor the extract method. The next
microrefactoring is to extract lines 7 through 21 into a separate
method. Highlight lines 7 through 21, right-click, and select

, , or press
. Give this new method a name such as

. Accept the rest of the defaults and
click , and now there’s a new method that IntelliJ
created for you at line 18.

Now you can see the whole method on the screen at once. It’s
easy to understand, and you have better technical agility.

Oh, let’s run the tests. That’s the next move in the dance.
Everything’s green, so we’re certain we haven’t changed any of
the external behavior. This refactoring has succeeded.

We have one more refactoring on our list. This one is called the
 method. It creates a new method from part of a larger

method. You can work on that on your own.

Keep working on this kata. Don’t worry about whether you solve
the kata. The point is to practice the red-green-refactor dance.

Conclusion

Refactoring your code helps you to develop quality code—the
foundation you need to quickly react to change, add new
features, and deliver high-performance products.

convertconvert

if(romanNumeral.length() == 1)if(romanNumeral.length() == 1)

elseelse

returnreturn

ifif ifif

else returnelse return 66

refactorrefactor extract andextract and methodmethod

option+command+Moption+command+M

convertSingleDigitconvertSingleDigit

refactorrefactor

extractextract

Mohamed Taman
Mohamed Taman (@_tamanm) is the CEO
of SiriusXI Innovations and a Chief
Solutions Architect for Effortel
Telecommunications. He is based in
Belgrade, Serbia, and is a Java Champion,
and Oracle Groundbreaker, a JCP member,
and a member of the Adopt-a-Spec
program for Jakarta EE and Adopt-a-JSR
for OpenJDK.

Share this Page

This article went through a hands-on kata-based Roman
numeral to Arabic numeral converter problem that teaches basic
refactoring techniques, tailored to agile development.

You learned how to set up a test-driven development
environment for new code. And we walked through basic
refactoring techniques, such as variable renaming, moving code,
extracting methods, and inline methods, by doing a
microrefactoring. The point is to practice the moves: red, green,
refactor.

In the next article, I’ll explain how to stabilize legacy code that
has outstanding technical debt—inefficiencies and errors
introduced due to sloppy and careless programming.

And in the third article, you will use refactoring to simplify the
legacy code, remove duplication, and build more reusable
objects. Finally, I will show you how refactoring complements an
agile workflow by demonstrating how to add a new feature to the
simplified codebase quickly.

Dig deeper

Test-driven development: Really, it’s a design technique

JUnit 5—A special issue of Java Magazine

Interview with Kent Beck, the parent of JUnit and creator of
TDD



Unit testing your application with JUnit

Simplified test-driven development with Oracle Visual
Builder



Two books: Refactoring to Patterns by Joshua
Kerievsky and Refactoring: Improving the Design of
Existing Code by Martin Fowler




Facebook


Twitter


LinkedIn


Email

https://blogs.oracle.com/javamagazine/mohamed-taman
https://blogs.oracle.com/javamagazine/mohamed-taman
https://twitter.com/_tamanm
https://www.infoq.com/articles/test-driven-design-java/
https://blogs.oracle.com/java/junit-5-java-magazine
https://blogs.oracle.com/javamagazine/interview-with-kent-beck
https://www.oracle.com/technical-resources/articles/adf/essentials-part5.html
https://blogs.oracle.com/vbcs/simplified-test-driven-development-with-oracle-visual-builder
https://www.informit.com/store/refactoring-to-patterns-9780321213358
https://martinfowler.com/books/refactoring.html

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

