
TESTING

JUnit 5.6 Makes Testing Easy with
New Features
New features such as the ability to define
test execution order and run tests in parallel
make this an important release.
by Mert Çalişkan

May 4, 2020

JUnit, the widely used Java unit testing framework, had a major
milestone release with JUnit 5 in 2017, which provided a complete rewrite
of the whole framework after 10 years of evolution on version 4.x. After
the big 5.0.0 release, the JUnit team set a rapid development pace with
new minor releases every four to five months; the latest minor version
was 5.6.0 on January 20, 2020, which was updated to 5.6.1 on March 22.

I’ll revisit the framework, showcasing the newest features it brings to the
table by demonstrating them with code samples. I have also annotated
the descriptions of relevant features with “(since 5.x)” to highlight in which
version those features were introduced into the framework.

First, a quick terminology definition: JUnit 5 is composed of three
separate modules.

(Editor’s note: If you have JUnit 4 tests in your toolbox, read Brian
McGlauflin’s “Migrating from JUnit 4 to JUnit 5: Important Differences and
Benefits.”)

If you are using Maven, the dependency for JUnit 5.6 can be easily
added as shown in Listing 1.

Listing 1.

JUnit Platform is the foundation for launching testing frameworks in
the JVM; it is supported by many IDEs and build tools.

JUnit Jupiter is the newest programming model as well as the
 for JUnit 5 tests.

TestEngineTestEngine

Finally, there’s JUnit Vintage, which is the for older
JUnit 3 and JUnit 4 tests.

 TestEngineTestEngine

<dependency><dependency>
 <groupId>org.junit.jupiter</groupId> <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter-api</artifactId> <artifactId>junit-jupiter-api</artifactId>
 <version>5.6.0</version> <version>5.6.0</version>
 <scope>test</scope> <scope>test</scope>
</dependency></dependency>

JUnit 5.6 Makes Testing Easy with
New Features

Defining the Order of Test Execution

Defining Declarative Timeouts

Conditional Test Execution

Programmatic Extension
Registration

Executing Tests in Parallel

Conclusion

Learn More

SubscribeTopics DownloadsArchives

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/testing-3
http://junit.org/junit5/
https://blogs.oracle.com/javamagazine/migrating-from-junit-4-to-junit-5-important-differences-and-benefits
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

If you are using Gradle, the dependency can be added as shown in
Listing 2.

Listing 2.

Let’s move on to the new features!

Defining the Order of Test Execution

You can define an execution order between the test methods of a given
class alphanumerically, randomly, with a given annotation (since
5.4), or with a custom order definition. The
annotation (since 5.4) that is placed on the class level will do the trick to
enable the order that you’d like to apply.

Executing test methods according to method names alphanumerically is
shown in Listing 3.

Listing 3.

In Listing 3, the execution order will be as follows:
.

It’s also possible to define a random order with the definition
, where

execution of the methods will be selected randomly. This would be
meaningful when there is no inter-test dependency and you want to make
sure to keep it that way, so no unnecessary relationships are built
between your tests in upcoming stages.

If you want to explicitly define the order of the tests, you can use
annotation, as shown in Listing 4.

Listing 4.

testCompile group: 'org.junit.jupiter', name: 'junittestCompile group: 'org.junit.jupiter', name: 'junit

@Order@Order

@TestMethodOrder@TestMethodOrder

@TestMethodOrder(MethodOrderer.Alphanumeric.class)@TestMethodOrder(MethodOrderer.Alphanumeric.class)
class OrderedTest {class OrderedTest {

 @Test @Test
 void testC() { void testC() {
 System.out.println("Test C"); System.out.println("Test C");
 } }

 @Test @Test
 void testZ() { void testZ() {
 System.out.println("Test Z"); System.out.println("Test Z");
 } }

 @Test @Test
 void testA() { void testA() {
 System.out.println("Test A"); System.out.println("Test A");
 } }
}}

testA() -> testC() -> testZ()testA() -> testC() -> testZ()

@TestMethodOrder(MethodOrderer.Random.class)@TestMethodOrder(MethodOrderer.Random.class)

@Order@Order

class OrderedTest {class OrderedTest {

 @Test @Test
 @Order(1) @Order(1)
 void testZ() { void testZ() {
 System.out.println("Test Z"); System.out.println("Test Z");
 } }

In Listing 4, the lowest value will have the highest precedence, so the
 method will execute before the method. The methods

that are not annotated with will have the default value
 (since 5.6).

It’s also possible to define a custom ordering mechanism and provide it to
the annotation. The implementation given in
Listing 5 orders the test methods according to the length of the method
name, so short method names execute before long ones.

Listing 5.

The implementation should be provided to the
 annotation, as shown in Listing 6.

Listing 6.

The execution order will be
.

Defining Declarative Timeouts

JUnit has the option to mark any test as failed if it takes more time than
permitted by a specified threshold. This is very helpful for diagnosing any
long-running tests; beginning with JUnit 5.5, it’s possible to define a
timeout limit with the annotation. Listing 7 shows the usage.

Listing 7.

 @Test @Test
 @Order(2) @Order(2)
 void testC() { void testC() {
 System.out.println("Test C"); System.out.println("Test C");
 } }
}}

testZ()testZ() testC()testC()

@Order@Order

Integer.MAX_VALUE / 2Integer.MAX_VALUE / 2

@TestMethodOrder@TestMethodOrder

class CustomOrder implements MethodOrderer {class CustomOrder implements MethodOrderer {

 @Override @Override
 public void orderMethods(MethodOrdererContext co public void orderMethods(MethodOrdererContext co
 context.getMethodDescriptors().sort(context.getMethodDescriptors().sort(
 Comparator.comparingInt(Comparator.comparingInt(
 methodDescriptor -> methodDescriptor.get methodDescriptor -> methodDescriptor.get
 .get .get
 .len .len
 } }
}}

CustomOrderCustomOrder

@TestMethodOrder@TestMethodOrder

@TestMethodOrder(CustomOrder.class)@TestMethodOrder(CustomOrder.class)
class OrderedTest {class OrderedTest {

 @Test @Test
 void a_very_long_test_method() { void a_very_long_test_method() {
 } }

 @Test @Test
 void short_mthd() { void short_mthd() {
 } }
}}

short_mthd() -> a_very_long_test_method()short_mthd() -> a_very_long_test_method()

@Timeout@Timeout

@Test@Test
@Timeout(value = 1)@Timeout(value = 1)
void checkJobDoesNotExceedLimit() void checkJobDoesNotExceedLimit()

In the test method, the timeout
value is set to 1 second, which is the default time unit. Obviously, this test
will fail since its execution lasts for 1,500 milliseconds. A different unit
can be specified as shown in Listing 8.

Listing 8.

It’s also possible to define the timeout value with system properties.
Listing 9 defines the timeout limit as 100 milliseconds for each test that
runs.

Listing 9.

If a value is also set by the annotation, that will override the value defined
by the system property. Here’s a list of all the system property keys along
with their explanations:

The annotation can be placed at the class level to provide a
default timeout value for each test method that class contains. Also, the

 annotation can be used on the lifecycle methods annotated
with , , , or . The

 annotation is marked as experimental with JUnit 5.6, so it
may be subject to change in the upcoming releases.

Conditional Test Execution

As of JUnit 5.1, it’s possible to either enable or disable test executions
programmatically based on a condition with annotations defined. In this

 throws InterruptedException { throws InterruptedException {
 Thread.sleep(1500); Thread.sleep(1500);
}}

checkJobDoesNotExceedLimit()checkJobDoesNotExceedLimit()

@Timeout(value = 500, unit = TimeUnit.MILLISECONDS)@Timeout(value = 500, unit = TimeUnit.MILLISECONDS)

-Djunit.jupiter.execution.timeout.test.method.defaul-Djunit.jupiter.execution.timeout.test.method.defaul

: Default
timeout value for all testable and lifecycle methods

junit.jupiter.execution.timeout.defaultjunit.jupiter.execution.timeout.default

: Default timeout value for all testable methods
junit.jupiter.execution.timeout.testable.method.dejunit.jupiter.execution.timeout.testable.method.de

: Default timeout value for methods annotated with @Test
junit.jupiter.execution.timeout.test.method.defauljunit.jupiter.execution.timeout.test.method.defaul

: Default timeout value for methods annotated with
junit.jupiter.execution.timeout.testtemplate.methojunit.jupiter.execution.timeout.testtemplate.metho

@TestTemplate@TestTemplate

: Default timeout value for methods annotated with
junit.jupiter.execution.timeout.testfactory.methodjunit.jupiter.execution.timeout.testfactory.method

@TestFactory@TestFactory

: Default timeout value for all lifecycle methods
junit.jupiter.execution.timeout.lifecycle.method.djunit.jupiter.execution.timeout.lifecycle.method.d

: Default timeout value for methods annotated with
junit.jupiter.execution.timeout.beforeall.method.djunit.jupiter.execution.timeout.beforeall.method.d

@BeforeAll@BeforeAll

: Default timeout value for methods annotated with
junit.jupiter.execution.timeout.beforeeach.method.junit.jupiter.execution.timeout.beforeeach.method.

@BeforeEach@BeforeEach

: Default timeout value for methods annotated with
junit.jupiter.execution.timeout.aftereach.method.djunit.jupiter.execution.timeout.aftereach.method.d

@AfterEach@AfterEach

: Default timeout value for methods annotated with
junit.jupiter.execution.timeout.afterall.method.dejunit.jupiter.execution.timeout.afterall.method.de

@AfterAll@AfterAll

@Timeout@Timeout

@Timeout@Timeout

@BeforeAll@BeforeAll @BeforeEach@BeforeEach @AfterEach@AfterEach @AfterAll@AfterAll

@Timeout@Timeout

section, I will list these annotations from different categories along with
their usage.

JRE conditions. It’s possible to enable or disable a test execution
according to the version of the JRE. The annotation
(since 5.1) enables the execution of a test only on a specified JRE
version. The test method in Listing 10 will only execute on Java version
8.

Listing 10.

The annotation (since 5.1) does the opposite and
disables the test execution on a given JRE version. It’s possible to define
JRE versions ranging from 8 to 15 with JUnit version 5.6.

 and (both since
5.6) are the two annotations for defining the execution conditions where
the annotated method will either be enabled or disabled on a specific
range of JREs. An example for enabling a test execution on a specific
JRE version range is shown in Listing 11.

Listing 11.

Operating system conditions. A test execution can also be enabled or
disabled according to the version of the operating system (OS). The

 annotation (since 5.1) enables a test execution on
macOS, as shown in Listing 12.

Listing 12.

The annotation (since 5.1) does the opposite and
disables the test execution on a given OS version. Possible values for the
OS versions are , , , , , and .

Environment variable conditions. A test execution can be enabled or
disabled according to the existence of an environment variable. The

 annotation (since 5.1) enables a
test execution if the environment variable with the specified name
matches the given regular expression. The

 annotation (since 5.1) does the
opposite by disabling test execution. Listing 13 shows an example

@EnabledOnJre@EnabledOnJre

@Test@Test
@EnabledOnJre(value = JRE.JAVA_8)@EnabledOnJre(value = JRE.JAVA_8)
void shouldOnlyPassOnJava8() {void shouldOnlyPassOnJava8() {
 // ... // ...
 } }
}}

@DisabledOnJre@DisabledOnJre

@EnabledForJreRange@EnabledForJreRange @DisabledForJreRange@DisabledForJreRange

@Test@Test
@EnabledForJreRange(min = JRE.JAVA_9, max = JRE.JAVA@EnabledForJreRange(min = JRE.JAVA_9, max = JRE.JAVA
void shouldRunBetweenJava8AndJava11() {void shouldRunBetweenJava8AndJava11() {
 // ... // ...
}}

@EnabledOnOs@EnabledOnOs

@Test@Test
@EnabledOnOs(value = OS.MAC)@EnabledOnOs(value = OS.MAC)
void shouldOnlyRunOnMacOs() {void shouldOnlyRunOnMacOs() {
 // ... // ...
}}

@DisabledOnOS@DisabledOnOS

AIXAIX LINUXLINUX MACMAC SOLARISSOLARIS WINDOWSWINDOWS OTHEROTHER

@EnabledIfEnvironmentVariable@EnabledIfEnvironmentVariable

@DisabledIfEnvironmentVariable@DisabledIfEnvironmentVariable

where the test gets executed if the environment variable is set to
either or .

Listing 13.

System property conditions. A test execution can be enabled or
disabled according to the existence of a system property. The

 annotation (since 5.1) enables a test
execution if the system property with the specified name matches the
given regular expression. The
annotation (since 5.1) does the opposite by disabling test execution.
Listing 14 demonstrates enabling a test according to the existence of the

 system property. The test will run only if the underlying JRE is a
64-bit version.

Listing 14.

In JUnit 5.6, ,
,

, and
each support repetition, so they can be defined multiple times on a test
method. With JUnit 5.6, the and
annotations, which were already deprecated with previous releases, were
removed from the codebase. It’s recommended to use the annotations
defined in the categories above.

Programmatic Extension Registration

The main purpose for extensions is to provide the ability to extend
behavior on test classes and methods and reuse that logic on multiple
tests. JUnit 5 provided an elegant way by introducing an extension
mechanism. Through the Extension API, it’s possible to pause at defined
points in the lifecycle of a test’s execution and execute an extension that
is hooked.

With the annotation (since 5.1), it’s possible to
register extensions programmatically. A sample extension for logging test
method execution times is listed in Listing 15.

Listing 15.

HOMEHOME

/Users/mcaliskan/Users/mcaliskan /Users/mertcaliskan/Users/mertcaliskan

@Test@Test
@EnabledIfEnvironmentVariable(named = "HOME", @EnabledIfEnvironmentVariable(named = "HOME",
 matches = "/Users/mcaliskan|/Users/mertcaliska matches = "/Users/mcaliskan|/Users/mertcaliska
void shouldOnlyRunOnSpecifiedHOMEDirectory() {void shouldOnlyRunOnSpecifiedHOMEDirectory() {
 // ... // ...
}}

@EnabledIfSystemProperty@EnabledIfSystemProperty

@DisabledIfSystemProperty@DisabledIfSystemProperty

os.archos.arch

@Test@Test
@EnabledIfSystemProperty(named = "os.arch", @EnabledIfSystemProperty(named = "os.arch",
 matches = ".*64.*") matches = ".*64.*")
void worksOnlyOn64BitArchitecture() {void worksOnlyOn64BitArchitecture() {
 // ... // ...
}}

@EnabledIfEnvironmentVariable@EnabledIfEnvironmentVariable

@DisabledIfEnvironmentVariable@DisabledIfEnvironmentVariable

@EnabledIfSystemProperty@EnabledIfSystemProperty @DisabledIfSystemProperty@DisabledIfSystemProperty

@EnabledIf@EnabledIf @DisabledIf@DisabledIf

@RegisterExtension@RegisterExtension

public class LogTestExecutionTimepublic class LogTestExecutionTime
 implements BeforeTestExecutionCallback, implements BeforeTestExecutionCallback,
 AfterTestExecutionCallback { AfterTestExecutionCallback {

 private long startTime; private long startTime;

 public void beforeTestExecution(ExtensionContext public void beforeTestExecution(ExtensionContext

Registering the extension within a test class is shown in Listing 16.

Listing 16.

With JUnit 5.5, some constraints are applied while registering an
extension. One is that the field annotated with
cannot be private. The other is that the extension class must implement
at least one of the Extension APIs. Prior to version 5.4, misconfigured
extensions were silently ignored.

Executing Tests in Parallel

By default, JUnit Jupiter runs tests sequentially in a single thread, but
beginning with version 5.3, it’s possible to execute tests in parallel as
well. There’s an important caveat: This is an experimental feature.

First, the configuration parameter
 should be set to

 via the system property. The test method, or its containing class,
should be annotated with

 (since 5.3). A simple
example test is shown in Listing 17, where an endpoint is tested five
times concurrently. The implementation uses the
annotation where it composes the annotation.

Listing 17.

System property keys that were defined for parallel execution
configuration—

 and

—can also be set to either or to enable
parallel execution.

 { {
 startTime = System.currentTimeMillis(); startTime = System.currentTimeMillis();
 } }

 public void afterTestExecution(ExtensionContext public void afterTestExecution(ExtensionContext
 long elapsedTime = System.currentTimeMillis long elapsedTime = System.currentTimeMillis
- startTime;- startTime;
 System.out.printf("Test Execution took %d ms System.out.printf("Test Execution took %d ms
 } }
}}

class ExtensionTest {class ExtensionTest {

 @RegisterExtension @RegisterExtension
 LogTestExecutionTime logTestExecutionTime = LogTestExecutionTime logTestExecutionTime =
 new LogTestExecutionTime() new LogTestExecutionTime()

 @Test @Test
 void longRunningTest() { void longRunningTest() {
 // … // …
 } }
}}

@RegisterExtension@RegisterExtension

junit.jupiter.execution.parallel.enabledjunit.jupiter.execution.parallel.enabled

truetrue

@Execution(ExecutionMode.CONCURRENT)@Execution(ExecutionMode.CONCURRENT)

@RepeatedTest@RepeatedTest

@TestTemplate@TestTemplate

@Execution(ExecutionMode.CONCURRENT)@Execution(ExecutionMode.CONCURRENT)
@RepeatedTest(value = 5, name = "{displayName} {curr@RepeatedTest(value = 5, name = "{displayName} {curr
void testEndpointConcurrently() {void testEndpointConcurrently() {
 // … // …
}}

junit.jupiter.execution.parallel.mode.default (A)junit.jupiter.execution.parallel.mode.default (A)

junit.jupiter.execution.parallel.mode.classes.defaultjunit.jupiter.execution.parallel.mode.classes.default

(B)(B)

concurrentconcurrent same_threadsame_thread

https://junit.org/junit5/docs/current/api/org.junit.jupiter.api/org/junit/jupiter/api/extension/package-summary.html

Mert Çalişkan
Mert Çalışkan (@mertcal) is a Java Champion and
a coauthor of PrimeFaces Cookbook (Packt
Publishing, 2013) and Beginning Spring (Wiley
Publications, 2015). He currently is working on his
latest book, Java EE 8 Microservices, and he works
as a developer on the Payara Server inside the
Payara Foundation.

Share this Page

Figure 1 demonstrates how the execution will differ between all methods
within one class and top-level classes, respectively. The first column has
the notation of (A, B) with the specified values and

.

Example of executing tests in parallel.
Figure 1. Example of executing tests in parallel

See the documentation for more details on the parallel execution of tests.

Conclusion

The JUnit team is intensively working on 5.x branches with a four-to-five-
month release cadence, and it’s great to have new features released with
the redesigned version of JUnit.

I have described some of the major features shipped between releases
5.0 and 5.6, and there are more. One other thing worth mentioning is that
the JUnit artifacts that are produced now contain OSGi metadata. You
can easily use them within your favorite OSGi container as well. Another
is that as of version 5.6, JUnit also publishes its Gradle module
metadata, which is a fine-grained variant-aware dependency resolution
mechanism for Gradle users.

Note that some of the JUnit 5 API is still subject to change; the team is
annotating the public types with the annotation and assigning
values such as , , and .

Learn More

JUnit 5 official documentation

same_threadsame_thread

concurrentconcurrent

@API@API

ExperimentalExperimental MaintainedMaintained StableStable

Facebook

Twitter

LinkedIn

Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/mert-%C3%A7ali%C5%9Fkan
https://blogs.oracle.com/javamagazine/mert-%C3%A7ali%C5%9Fkan
https://www.twitter.com/mertcal
https://junit.org/junit5/docs/current/user-guide/#writing-tests-parallel-execution
http://junit.org/junit5/
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

