
CODING FRAMEWORKS

Java in the Browser with TeaVM
Build Web apps using Java on both the
front and back ends.
by Andrew Oliver

October 8, 2019

You may remember a time when Java ran in the browser, a time when
“pure Java” UIs could be easily launched from a web page. Back then,
you could develop a user interface and back end in the same, strongly
typed language. Data classes and validation logic could be shared. Code
quality tools worked for front-end and back-end code alike. Life was
good.

In recent years, however, browser vendors have favored JavaScript and
they have steadily degraded support for Java. In a world dominated by
client-side web apps, Java is seemingly relegated to being a server-side-
only technology. The benefits of a full-stack Java experience are lost.
Development productivity nosedives as developers need to jump
between different languages and toolsets. Errors are introduced when
refactorings on the server side are missed on the client side and vice
versa. The excellent Java toolsets for maintaining code quality then need
to be reinvented on the client side. It feels like a big step backward.

A Solution

Fortunately there is a solution. TeaVM is an open source project that
takes Java code and converts it to fast, compact JavaScript at build time.
It provides wrappers for numerous web APIs so your code can fully
interact with the browser, from DOM manipulation to getting the user’s
location. It includes a lightweight framework for web page templating
called Flavour. Flavour also has built-in support for easy invocation of
JAX-RS web services, including JSON binding.

TeaVM is conceptually related to Google Web Toolkit (GWT), as both
products enable you to code in Java and produce browser-friendly
JavaScript. However, TeaVM has advantages over GWT in several
areas: flexibility, performance, and web-nativeness. TeaVM supports any
JVM language, including Kotlin and Scala, whereas GWT is Java-only.
TeaVM builds your code faster than GWT, and produces smaller
JavaScript that performs better in the browser. Last, but perhaps most
important, the TeaVM’s Flavour library allows the app content and
components to be built with HTML and CSS, which enables developers
and designers to work together.

When you pair TeaVM on the front end with traditional Java services on
the back end, you have a full Java stack once again. You can code in
Java from top to bottom. Share classes between the UI and server.
Refactor names in the server and the UI is refactored too. Write unit tests
for all your business logic in JUnit. Measure test quality with PIT mutation
testing. Check code quality with PMD, Checkstyle, and other utilities.

Getting Started

Java in the Browser with TeaVM

A Solution

Getting Started

Using Flavour to Show Lists

Other Standard Components

Expression Language

Reacting to Events

Binding

Routing

RESTful APIs

Custom Components

Use Location API

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/coding-2
https://blogs.oracle.com/javamagazine/frameworks
http://teavm.org/
http://pitest.org/
https://pmd.github.io/
https://checkstyle.sourceforge.io/
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

A TeaVM Flavour app is a standard Maven web project with a few
additions. The main page of the application is in the usual place:
webapp/index.html (with CSS in by convention).
However, the main page is usually short, pulling in HTML templates
(page fragments) from the resources/templates folder. The HTML
templates are linked one-to-one with Java view classes. The view
classes (under) provide business logic for the page.
They contain the business logic, properties to be used in the templates,
and bindings. More concretely, view classes can do anything from
reacting to events, to communicating with a REST service, to changing
the displayed template.

In this section I’ll show you how to stand up a simple TeaVM application
from scratch. Along the way I’ll create HTML templates linked to Java-
based business logic that reacts to user actions entirely in the browser.

The fastest way to get started is to use the Maven archetype to create a
TeaVM Flavour project:

If you use for the group and package and for
the artifact ID, you’ll end up with these key files:

Build the project using the goal:

The unpackaged web app files end up in
. You can open the index.html file

in your browser and see your app working right away. No plugins or
downloads are required. Your Java app is running directly in the browser.

If you want to deploy your app in Tomcat, use
. Or you can use a symlink

from to the
 folder. If you use this latter approach, you can

access the app at (if Tomcat is
configured to run on the default port, which is 8080).

Using Flavour to Show Lists

It is common to want to show a list of items in a UI. You can show short-
to-medium length lists using the Flavour element. Just
like a regular Java loop, it takes a collection to iterate over and
a variable name for the collection element, scoped to the loop body.

The collection is read from the view class. If you have defined a list of
songs with a getter , you can make

webapp/css/app.css

src/main/java

mvn archetype:generate \
 -DarchetypeGroupId=org.teavm.flavour \
 -DarchetypeArtifactId=teavm-flavour-application
 -DarchetypeVersion=0.2.0

com.mycompany flavour

: This file
contains the Java logic for the app, referred to as the view, and it
includes a property (name) used in the template described in the
next bullet point.

src/main/java/com/mycompany/Client.java

: This is the
HTML template for the app. It includes an input field and HTML text,
which are bound to the field. If you update the input, the
HTML changes. As you’ll see later in the sections on routing and
components, the HTML template and the view are a fundamental
pair used throughout Flavour.

src/main/resources/templates/client.html

name

: The CSS for the app goes
here.

src/main/webapp/css/app.css

: This is the wrapper HTML
page for the application. There’s not much in here—the real action
happens in the templates.

src/main/webapp/index.html

package

mvn clean package

target/flavour-1.0-SNAPSHOT/

target/flavour-1.0-SNAPSHOT.war

${TOMCAT_HOME}/webapps/flavour

flavour-1.0-SNAPSHOT

http://localhost:8080/flavour

<std:foreach>

foreach

public List<Song> getSongs()public List<Song> getSongs()

a simple list as shown next. (All code mentioned in this article is available
from the download area.) This code is found in the project in

:

The ordered list () produced by Flavour has a list item () for every
 returned by . Each item in the list includes the song

name and artist. The element evaluates the
expression and inserts it into the page. Flavour’s expression language
allows you to access JavaBeans-style properties () by name
without explicitly invoking getters and setters. Thus, is the
easy way to write .

Let’s look at each of these features in more detail.

Other Standard Components

In addition to , Flavour supports many more standard
components to control the page contents:

The standard components work closely with the Flavour Expression
Language, discussed next.

Expression Language

Attributes in Flavour components are specified using an expression
language (EL). The EL is Java-like, but it has some extra syntactic sugar
and a few tweaks to work well inside an HTML page.

All the standard primitives are supported, including the following:

Methods and properties from the view class can be used by name.
Method invocations take parameters as in Java. Properties, however, can
be referenced directly by name. As you saw earlier, you only need to
specify . Flavour handles invoking for you.

Here are examples of several standard components showing how to use
the EL (from in).

Reacting to Events

list

client.html

 <std:foreach var="song" in="songs">

 <html:text value="song.name"> by
 <html:text value="song.artist"></stron

 </std:foreach>

ol li

SongSong getSongs()getSongs()

<html:text> value

getX/setXgetX/setX

song.namesong.name

song.getName()song.getName()

std:foreach

 enables you to add content to a page based on a boolean
condition.

std:if

 lets you set the attribute with an expression. For
example, would let you set an element’s class
dynamically.

attr:xyz xyz
attr:class

strings (these use single quotes to work easily inside HTML)

numbers (integer and floating-point)

booleans (true and false)

title getTitle()getTitle()

client.html standard-components

<!-- Uses showHeading boolean property -->
<std:if condition="showHeading">
 <h1>Flavour Messenger</h1>
</std:if>

<!-- Enables a button when the message is entered --
<!-- message.empty is EL shorthand for message.isEmp
<button html:enabled="!message.empty">Check Spelling

https://bitbucket.org/javamagazine/magdownloads/wiki/Home

A UI isn’t complete without the ability to respond to user interaction.
Flavour enables you to invoke Java methods when DOM events occur by
using the attribute. Among the commonly used options are the
following:

Suppose that in the template, you want to invoke a method when a
button is clicked. Simply add the attribute on the button:

Binding

Binding lets you link a property in the view class to a display component.
There are several kinds of binding. Some cause the UI to be updated as
the properties in the view class change. Some cause properties in the
view class to be updated as users manipulate UI components.
Bidirectional bindings combine the two, keeping the view class properties
and the UI in sync when changes happen on either side. Here are some
of the most common:

From the previous file:

Routing

Single-page applications (SPAs) have multiple screens that are switched
in-browser, without requiring requests to the server. Flavour provides full
support for SPAs via its routing feature. Routing involves several pieces:

Suppose you have a screen that lists restaurants and then a detail page
for each restaurant. You could create a template for the restaurant listing
and another for the restaurant details. Each template would have a view
page. The route interface (in ApplicationRoute.java in my sample code)
looks like this:

event

: Handles a click eventevent:click

: Handles a change in the value of a componentevent:change

sendsend

event:click

<button event:click="send()">Send</button>

 outputs HTML in the template based on view class
properties.

html:text

 updates an input component based on changes in
the view class properties.

html:value

 invokes view class methods when an input value is
changed.

html:change

 is the most powerful; it combines
 and to keep a UI input field and a

view class property in sync, no matter which one changes.

html:bidir-value
html:value html:change

<form>
<!-- Reads/writes from/to the message property on va
 <input type="text" html:bidir-value="message">
</form>

Route interface: Defines the screens and their URLs

Route implementation: Instantiates the screens on demand

Screen HTML templates: Contain the layout and components, one
per screen



View classes: Provide data and event handlers for the templates,
one per template



@PathSet@PathSet
interface ApplicationRoute extends Route {interface ApplicationRoute extends Route {
 @Path("/restaurants") @Path("/restaurants")
 public void restaurantList(); public void restaurantList();

 @Path("/restaurant/{id}") @Path("/restaurant/{id}")

Note how the page has a parameter for the
restaurant ID.

The implementation has the logic to switch between pages. By
convention, the is implemented in the main page:

The restaurant listing page (in)
uses to show the list of restaurants, each with a link to the
corresponding restaurant detail page.

The restaurant detail page () shows
information about one restaurant. is used to show fields
from the restaurant object.

RESTful APIs

Most web applications communicate with a server. Common uses are to
invoke remote services, store data, and get updates.

 public void restaurantDetails(@PathParameter("id" public void restaurantDetails(@PathParameter("id"
}}

restaurantDetailsrestaurantDetails

RouteRoute

RouteRoute Client.java

@BindTemplate("templates/client.html")@BindTemplate("templates/client.html")
public class Client extends ApplicationTemplate public class Client extends ApplicationTemplate
 implements ApplicationRoute { implements ApplicationRoute {
 RestaurantSource source = new RestaurantSource(RestaurantSource source = new RestaurantSource(

 public static void main(String[] args) { public static void main(String[] args) {
 Client client = new Client(); Client client = new Client();
 new RouteBinder() new RouteBinder()
 .withDefault(ApplicationRoute.class, .withDefault(ApplicationRoute.class,
 route -> route.restaurantLi route -> route.restaurantLi
 .add(client) .add(client)
 .update(); .update();
 client.bind("application-content"); client.bind("application-content");
 } }

 @Override @Override
 public void restaurantList() { public void restaurantList() {
 setView(new RestaurantListView(source)); setView(new RestaurantListView(source));
 } }

 @Override @Override
 public void restaurantDetails(int id) { public void restaurantDetails(int id) {
 setView(new RestaurantDetailsView(source, id setView(new RestaurantDetailsView(source, id
 } }
}}

restaurant-list.html routing

std:foreach

<div>
 <h1>Restaurants</h1>

 <std:foreach var="restaurant" in="restaurants">

 <button type="button"
 event:click="showRestaurant(restaura
 <html:text value="restaurant.name"/>
 </button>

 </std:foreach>

</div>

restaurant-detail.html

<html:text>

<div>
 <h1><html:text value="restaurant.name"/></h1>
 <h3>In business for
 <html:text value="restaurant.yearsInBusiness"/>
 <p></p>
 <p><button type="button" event:click="showList()">
 Return to the restaurant list</button></p>
</div>

Flavour provides an easy way to access web services. The
class can construct clients for JSON-based web services declared as
JAX-RS services. Given the popularity of JSON and JAX-RS, there is a
good chance your web services are eligible. Simply include your JAX-RS
interface in your UI module’s POM file and you are then ready to
instantiate it in Flavour with one line of code:

Continuing with the restaurant example, let’s say your service had a
method to get the list of restaurants:

You could invoke it this way:

That’s it! Now you have the list of restaurants client-side to use in your
view, as shown in the previous section.

Small REST changes have been announced for an upcoming TeaVM
version 0.6 release. To make your code work with 0.6, you need only add
marker annotations in two places:

Custom Components

As you design your pages and view classes, you’ll likely discover there is
a chunk of HTML and code that you want to reuse. Two common cases I
see regularly are

The first part of defining a component is very similar to defining a normal
page in a Flavour app: You have an HTML template bound to a view
class. The templates (by convention located in)
contain the HTML for the component. The view class contains the
business logic and properties to be used in the template (like before), but
adds bindings. Bindings are unique to components—they specify how
attributes and other values are bound to the template. Attributes are used
to customize the component.

Let’s see how you create a restaurant component that could be reused in
a list or on multiple pages.

First, define the template in :

RESTClientRESTClient

YourService service = YourService service =
 RESTClient.factory(YourService.class) RESTClient.factory(YourService.class)
 .createResource("api"); .createResource("api");

List getRestaurants();List getRestaurants();

List restaurants = service.getRestaurants();List restaurants = service.getRestaurants();

annotation on your REST service interfaces
@Resource(org.teavm.flavour.rest.Resource)@Resource(org.teavm.flavour.rest.Resource)

annotation on any custom class passed to or from your service
method. (you don’t need to do this for standard classes like
and)

@JsonPersistable@JsonPersistable
(org.teavm.flavour.json.JsonPersistable)(org.teavm.flavour.json.JsonPersistable)

StringString
LongLong

A portion of a page needs to be repeated on two different pages

A page has repeated sections, for example, either a list or table

src/main/components

components/restaurant.html

<div style="background-color: #99e">
 <div>
 <h1><html:text value="restaurant.name"/></h1>
 </div>
 <div>
 <h3><html:text value="restaurant.yearsInBusiness
 years in business!</h3>

Next, define the view class in
. Note

that the restaurant to be shown in the component is bound to a
 attribute.

The component also must be registered before use by adding the view
class name in

If your components are in a different package, change
to match.

With these steps complete, the restaurant component can be used in
other templates. Let’s redo the restaurant listing page from above to
show each restaurant on the listing page. I will place the component
inside a loop, creating one instance of the component for
each restaurant (as in):

Note the processing instruction at the start of the template. It tells
Flavour you want to use a component, and it specifies the prefix used
later in the file. Here, the prefix is declared as . Later when it is time
to use the component, the prefix reappears in

.

Use Location API

You can use the geolocation API to ask users for their location. Add the
following code to the sample app’s view class (here, in

):

 </div>
</div>

src/main/java/com/app/component/Restaurant.java

restaurantrestaurant

@BindTemplate("components/restaurant.html")@BindTemplate("components/restaurant.html")
@BindElement(name = "restaurant")@BindElement(name = "restaurant")
public class RestaurantComponent extends AbstractWidpublic class RestaurantComponent extends AbstractWid
 private Supplier<Restaurant> restaurantSupplier private Supplier<Restaurant> restaurantSupplier

 public RestaurantComponent(Slot slot) { public RestaurantComponent(Slot slot) {
 super(slot); super(slot);
 } }

 @BindAttribute(name = "restaurant") @BindAttribute(name = "restaurant")
 public void setNameSupplier(public void setNameSupplier(
 Supplier<Restaurant> supplier) { Supplier<Restaurant> supplier) {
 this.restaurantSupplier = supplier; this.restaurantSupplier = supplier;
 } }

 public Restaurant getRestaurant() { public Restaurant getRestaurant() {
 return restaurantSupplier.get(); return restaurantSupplier.get();
 } }
}}

META-INF/flavour/component-packages/com.mycompany

com.mycompany

std:foreach

restaurant-list.html

<?use comp:com.mycompany?>
<div>
 <h1>Restaurants</h1>

 <std:foreach var="restaurant" in="restaurants">

 <comp:restaurant restaurant="restaurant"/>

 </std:foreach>

</div>

use

comp

comp:restaurant-detail

Client.java

geolocation

public void locate() {public void locate() {
 if (Navigator.isGeolocationAvailable()) { if (Navigator.isGeolocationAvailable()) {

Andrew Oliver
Andy Oliver has been coding in, speaking on, and
writing about Java for more than 20 years. He was a
speaker at the O'Reilly Conference on Enterprise
Java. He has built UIs with a variety of Java toolkits,
including AWT, Swing, JavaFX, and Codename
One. He currently is working on several
TeaVM/Flavour-based projects.

Let’s add a button to trigger geolocation lookup and a separate text field
to show the results:

Because the geolocation happens asynchronously, use
 to trigger a display refresh.
 is inexpensive, so don’t worry about calling it

wherever you need to.

Conclusion

That’s it! You are now ready to build your own Java web apps with
TeaVM. You can create a restaurant listing website, a new social
network, or a breakthrough online game.

For more ideas and information or if you have questions beyond the
scope of this article, I recommend you visit the TeaVM website. It has
detailed documentation, examples, a forum, an issue list, and more.

Alexey Andreev is the author of TeaVM and Flavour. I am thankful to him
for reviewing a draft of this article.

 Navigator.getGeolocation().getCurrentPosition Navigator.getGeolocation().getCurrentPosition
 (Position pos) -> { (Position pos) -> {
 final Coordinates coords = pos.getCoo final Coordinates coords = pos.getCoo
 location = "Lat/Lon: " + coords.getLa location = "Lat/Lon: " + coords.getLa
 + "/" + coords.getLongitude + "/" + coords.getLongitude
 Templates.update(); Templates.update();
 }, },
 (PositionError positionError) -> { (PositionError positionError) -> {
 switch (positionError.getCode()) { switch (positionError.getCode()) {
 case PositionError.PERMISSION_DENI case PositionError.PERMISSION_DENI
 location = "The user blocked loc location = "The user blocked loc
 break; break;
 case PositionError.POSITION_UNAVAI case PositionError.POSITION_UNAVAI
 location = "Location could not b location = "Location could not b
 break; break;
 case PositionError.TIMEOUT: case PositionError.TIMEOUT:
 location = "A timeout occurred w location = "A timeout occurred w
 + " to determine your lo + " to determine your lo
 } }
 Templates.update(); Templates.update();
 }); });
 } else { } else {
 location = "This browser doesn't support g location = "This browser doesn't support g
 Templates.update(); Templates.update();
 } }
}}

public String getLocation() {public String getLocation() {
 return location; return location;
}}

<div>
 <div>
 <button event:click="locate()">Locate</button>
 </div>

 <div>
 Your location is: <html:text value="location"/>
 </div>
</div>

Templates.update()Templates.update()

Templates.update()Templates.update()

https://blogs.oracle.com/javamagazine/andrew-oliver
https://blogs.oracle.com/javamagazine/andrew-oliver
http://teavm.org/

Share this Page

 

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

