
TESTING

Working and unit testing with
temporary files in Java
Temporary files are frequently used in
testing and in production. Here is how
to create and manage—and delete—
them.

by Andrew Binstock

February 26, 2021

Temporary files are underappreciated resources. They make
excellent stand-ins for mocks and stubs because they’re the real
thing and they can be easily manipulated to produce the error
conditions that you might want to simulate in test suites. In
addition, testing frameworks such as Junit make it simple to
create temporary files and dispose of them automatically. But as
any view of the trash that collects on your system’s designated
temporary directory will confirm, these files have many uses
outside of testing. Installation artifacts, logs, saved
configurations, and many other one-off situations make short-
lived files attractive.

In this article, I examine the use of temporary files in Java. Much
of the emphasis is on the unique APIs for their use, especially
for disposing of them after their service is complete. Because
testing remains the primary use case, I start with unit tests and
then move to using temporary files in non-testing contexts. To
follow along, you will need a basic familiarity with Java and
JUnit. Because JUnit is currently in transition between two major
versions—JUnit 4.x and 5.x—I provide code for both versions.

Temporary test files in unit testing

For many years, creating files in unit tests was considered a bad
practice because file creation and I/O were slow. In addition, file
I/O was considered outside the scope of testing a single unit. To
avoid slowing down test runs, organizations that were strongly
committed to testing sequestered the file I/O outside of the
continuous runs of unit tests.

Working and unit testing with
temporary files in Java

Temporary test files in unit
testing

Testing in JUnit 5.x

Temporary files outside of unit
test frameworks

Using the jimfs in-memory file
system

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/testing-3
https://junit.org/junit5/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

The book How Google Tests Software (by James Whittaker,
Jason Arbon, and Jeff Carollo) explains in detail how Google
runs its test suites: It makes no distinction between unit tests,
integration tests, and user acceptance testing when determining
what to run. Rather, the principal criterion is the speed of the
tests. Fast tests run together and frequently. Slower tests are run
less frequently. Very slow tests are run even less frequently.

The idea of excluding file I/O may have been valid in the era of
relatively slow hard disk drives that consisted of spinning
platters, but everything changed with the advent of solid-state
disks. File access is now so fast that you can safely run file tests
with unit tests. As you shall shortly see, JUnit has specific
provisions for doing just that since version 4.7.

Let’s look at some JUnit 4.13 code for creating a temporary
directory and populating it with temporary files. (Please read this
section even if you’re using JUnit 5, since almost everything in it
applies to version 5.x.)

import org.junit.Before;import org.junit.Before;
import org.junit.Rule;import org.junit.Rule;
import org.junit.Test;import org.junit.Test;
import org.junit.rules.TemporaryFolder;import org.junit.rules.TemporaryFolder;

import static org.junit.Assert.*;import static org.junit.Assert.*;

import java.io.*;import java.io.*;

public class TempFilesJUnit4Test {public class TempFilesJUnit4Test {

 File file1, file2; File file1, file2;

 /* This folder and the files created in i /* This folder and the files created in i
 * tests are run, even in the event of fa * tests are run, even in the event of fa
 */ */
 @Rule @Rule
 public TemporaryFolder folder = new Tempo public TemporaryFolder folder = new Tempo

 /* executed before every test: create tem /* executed before every test: create tem
 @Before @Before
 public void setUp() { public void setUp() {
 try { try {
 file1 = folder.newFile("testfile file1 = folder.newFile("testfile
 file2 = folder.newFile("testfile file2 = folder.newFile("testfile
 } }
 catch(IOException ioe) { catch(IOException ioe) {
 System.err.println(System.err.println(
 "error creating temporary tes "error creating temporary tes
 this.getClass().getSimpleName this.getClass().getSimpleName
 } }
 } }

 /** /**
 * Write to the two temporary files and * Write to the two temporary files and
 */ */
 @Test @Test
 public void test2TempFiles() { public void test2TempFiles() {

 //write out data to the test files //write out data to the test files
 try { try {

https://www.informit.com/store/how-google-tests-software-9780321803023

This code creates a temporary directory, creates two temporary
files in that directory, writes to them, and then validates the
operations.

The imports are mostly the familiar ones for JUnit, but with the
addition of
which brings in the bits you’ll need in a moment. In the principal
testing class, immediately after the first comment block is the
following rule:

This rule tells JUnit to create a temporary folder. Specifically,
because the rule is annotated with , it will be run before
each test method. After the test completes, JUnit automatically
deletes the temporary folder and all its contents. This is true
whether the tests pass or fail or whether they throw an
exception. The folder itself is located in the temporary directory
designated by the operating system, and its location can be
found via

On my Windows system, the file appears in the directory
specified by the variable in my environment. It would be in

 on UNIX and Linux systems. The temporary directory’s
name is randomly created as shown in this directory on my
system:

FileWriter fw1 = new FileWriter(file1);FileWriter fw1 = new FileWriter(file1);
BufferedWriter bw1 = new BufferedWriter(fw1 BufferedWriter bw1 = new BufferedWriter(fw1
bw1.write("content for file1");bw1.write("content for file1");
bw1.close();bw1.close();

FileWriter fw2 = new FileWriter(file2);FileWriter fw2 = new FileWriter(file2);
BufferedWriter bw2 = new BufferedWriter(fw2 BufferedWriter bw2 = new BufferedWriter(fw2
 bw2.write("content for file2"); bw2.write("content for file2");
 bw2.close(); bw2.close();
 } }
 catch(IOException ioe) { catch(IOException ioe) {
 System.err.println(System.err.println(
 "error creating temporary tes "error creating temporary tes
 this.getClass().getSimpleName this.getClass().getSimpleName
 } }

 assertTrue(file1.exists()); assertTrue(file1.exists());
 assertTrue(file2.isFile()); assertTrue(file2.isFile());

 assertEquals(file1.length(), 17L); assertEquals(file1.length(), 17L);
 assertEquals(file1.length(), file2.l assertEquals(file1.length(), file2.l

 assertTrue(file1.getAbsolutePath().e assertTrue(file1.getAbsolutePath().e
 "testfile1.txt")); "testfile1.txt"));
 } }
}}

import org.junit.rules.TemporaryFolderimport org.junit.rules.TemporaryFolder

@Rule@Rule
 public TemporaryFolder folder = new Tempo public TemporaryFolder folder = new Tempo

@Rule@Rule

System.getProperty("java.io.tmpdir");System.getProperty("java.io.tmpdir");

TEMPTEMP

/tmp/tmp

C:\Users\me\AppData\Local\Temp\junit3689092698555504845\C:\Users\me\AppData\Local\Temp\junit3689092698555504845\

After creating the directory, the code then creates temporary files
using the newFile() method. As you see, it then writes to the
files. And in a series of assertions, I check that the files are there
and that they contain the data I wrote to them. I also check that
the files are named as I specified.

In this code, if I had wanted to create a directory under the
temporary directory, I would have used

One important guideline in writing unit tests is to avoid
depending on resources created by other unit tests. A handy
way to think of this is that you should be able to run the tests in a
suite in any order and they should pass or fail the same way
regardless of when they execute. Because JUnit’s rule deletes
the temporary directory after each test method is run, you know
that you’re always starting with a fresh temporary directory.
Likewise, in my code, you’ll also start with two fresh files,
because they’re specified in a rule with the annotation .
Code marked with this annotation in JUnit 4.x runs before every
executed test. If you want to specify that code should be run
once before the entire run of tests, use the
annotation.

Testing in JUnit 5.x

JUnit 5 came out in 2017 and is slowly displacing JUnit 4.x, even
though the JUnit team continues to patch and update the JUnit 4
line. JUnit 5.x brings many convenient features to unit testing. It
is comparatively easy to run JUnit 4 and 5 tests in the same
project, despite the differences in syntax. In the following code,
you’ll see the differences from the previous code. (For brevity,
I’ve omitted the actual tests, which are the same in both
versions.)

To learn more about the JUnit transition, see Brian McGlauflin’s
“Migrating from JUnit 4 to JUnit 5: Important differences and
benefits.”

folder.newFile("sub-folderName");folder.newFile("sub-folderName");

@Before@Before

@BeforeClass@BeforeClass

import org.junit.jupiter.api.*;import org.junit.jupiter.api.*;
import org.junit.jupiter.api.io.TempDir;import org.junit.jupiter.api.io.TempDir;

import java.io.*;import java.io.*;
import java.nio.file.InvalidPathException;import java.nio.file.InvalidPathException;
import java.nio.file.Path;import java.nio.file.Path;

import static org.junit.jupiter.api.Assertionimport static org.junit.jupiter.api.Assertion

public class TempFilesJUnit5Test {public class TempFilesJUnit5Test {

 Path path1, path2; Path path1, path2;
 File file1, file2; File file1, file2;

 /* This directory and the files created i /* This directory and the files created i
 * tests are run, even in the event of fa * tests are run, even in the event of fa
 */ */

https://junit.org/junit4/javadoc/4.12/org/junit/rules/TemporaryFolder.html
https://blogs.oracle.com/javamagazine/migrating-from-junit-4-to-junit-5-important-differences-and-benefits

The first thing to notice is that the import statements are
different. Also, the creation of the temporary directory is now
done by simply annotating the field containing the directory.
Notice that there is no call to a constructor. The annotation takes
care of that. Next, the former annotation for the
creation of the files is replaced by the more explicit

.

The file creation is also different: It relies on the NIO framework
to to create an NIO . To
maintain symmetry in the code for the tests, I convert the
objects to objects. A final note on this code: The exception
thrown if something goes wrong when creating the files is
different.

I should point out that the creation of temporary files was added
to JUnit 5 in release 5.4 and is still technically listed as an
“experimental” feature. With JUnit now at release 5.7, there is no
reason to believe that the experimental label should be a cause
for uncertainty. It’s extremely unlikely the feature will be
removed, or its syntax changed substantially.

If you’re considering which release to use for a new project, I’d
favor JUnit 5. A recent article, “JUnit 5.6 makes testing easy with
new features” by Mert Çalişkan, provides a good look at the
benefits and points to earlier articles on moving from version 4 to
5.x.

Temporary files outside of unit test frameworks

Sometimes you need to create temporary files for your
application or for specialized testing and so desire to use them
outside of a unit-testing framework. You have several options.
The most common is to use and

, which have been part of
 since Java 7. A key benefit of these

two methods is that you can create the temporary folder

 @TempDir @TempDir
 Path tempDir; Path tempDir;

 /* executed before every test: create two /* executed before every test: create two
 @BeforeEach @BeforeEach
 public void setUp() { public void setUp() {
 try { try {
 path1 = tempDir.resolve("testfil path1 = tempDir.resolve("testfil
 path2 = tempDir.resolve("testfil path2 = tempDir.resolve("testfil
 } }
 catch(InvalidPathException ipe) { catch(InvalidPathException ipe) {
 System.err.println(System.err.println(
 "error creating temporary tes "error creating temporary tes
 this.getClass().getSimpleName this.getClass().getSimpleName
 } }

 file1 = path1.toFile(); file1 = path1.toFile();
 file2 = path2.toFile(); file2 = path2.toFile();
 } }

@Before@Before

@BeforeEach@BeforeEach

resolve(String filename)resolve(String filename) PathPath

PathPath

FileFile

createTempDirectory()createTempDirectory()

createTempFile()createTempFile()

java.nio.file.Filesjava.nio.file.Files

https://blogs.oracle.com/javamagazine/junit-5-6-makes-testing-easy-with-new-features
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/nio/file/package-summary.html

anywhere you want, rather than having it default to a
predetermined locale. That is, you can create a temporary file in
any directory, not necessarily the system’s temporary directory.
Let’s examine this a little more, because there is an important
gotcha to watch out for. Here is sample code for creating a
temporary directory and a temporary file within it.

The first call is to create the temporary directory. I pass in a
location for it and the prefix to use in the name of the directory.
What the call promises is that it will create a directory with a
unique name that starts with the specified prefix. On my
Windows system, it created

The next call is to create a file. I pass it the to the directory
that will hold the file, the prefix to use in the filename, and the
extension of the file. The call promises to create a unique
filename in the directory using the prefix and extension. On my
system, in the temporary directory, this call created

As it stands, however, neither of these files is truly temporary.
When I quit the JVM, both the file and directory are still present.
The two calls promise only that they will create a unique name
directory and file, using the criteria I passed into the respective
functions. It’s up to me to delete them when the JVM shuts
down.

Clearly, deletion of the temporary files is a function I want to
automate, rather than perform manually. The
function in enables this to happen.

In the previous code, I would add the following after creating the
file:

import java.io.*;import java.io.*;
import java.nio.file.Files;import java.nio.file.Files;
import java.nio.file.Path;import java.nio.file.Path;
import java.nio.file.Paths;import java.nio.file.Paths;

......

 try { try {
 path1 = Files.createTempDirectory path1 = Files.createTempDirectory
 Paths.get("D:\\Dev\\misc"), Paths.get("D:\\Dev\\misc"),
 path2 = Files.createTempFile(pat path2 = Files.createTempFile(pat
 } }
 catch(IOException ioe) { catch(IOException ioe) {
 System.err.println("error creati System.err.println("error creati
 } }
 } }

D:\Dev\misc\tmpDirPrefix1028709432202080433D:\Dev\misc\tmpDirPrefix1028709432202080433

PathPath

testfile14901457104244137806.txttestfile14901457104244137806.txt

deleteOnExit()deleteOnExit()

java.nio.Filejava.nio.File

if(path2 != null)if(path2 != null)
 path2.toFile().deleteOnExit(); path2.toFile().deleteOnExit();

And as expected, the file is deleted when the JVM exits.
However, the directory remains. To delete the directory, you
need to empty the directory and then delete it. The

 method works only on a directory that is
empty. There is no simple way around this requirement: You
must walk the directory tree, delete all the files (using

), and after the directory is empty, delete the
directory or let the JVM delete it by use of . I
showed how to walk a directory tree in “The joy of writing
command-line utilities, Part 1: Finding duplicate files.”

If this process sounds like more bother than it’s worth, I suggest
skipping the creation of a temporary directory. Just create the
temporary files you need in your system’s default temporary
directory and mark them for deletion on exit. In most cases, you
don’t care what directory they’re in, so this location is as good as
any other—actually better because you’re implying to users that
they can delete the files anytime they wish. That’s not so evident
for files placed elsewhere.

Using the jimfs in-memory file system

There are occasional situations where you might want to create
temporary directory trees: temporary files inside temporary
subdirectories under a temporary parent directory. This can
become a lot to manage, and you might want to consider jimfs,
which is a handy library from Google for creating a Java in-
memory file system.

Jimfs is an on-heap, in-memory file system, which means that it
is deleted entirely when the JVM shuts down. You don’t need to
flag individual files or directories for deletion—they are all
destroyed upon exit from the JVM.

While in the previous examples you could count on the JVM to
clean up the temporary files you created on exit, there was no
absolute guarantee they’d be destroyed. For example, if the
server the app was running on crashed, the JVM would not have
the opportunity to delete the files. In certain cases, having these
temporary files now living permanently on the server could
represent an important security concern. Jimfs does not suffer
from this liability.

Jimfs provides most of the functionality you’d expect of a file
system, including file attributes, support for all standard file
operations, symbolic links, and even the ability to watch for file
system changes via Java’s WatchService.

To use jimfs, add the following to your Maven pom.xml file:

deleteOnExit()deleteOnExit()

File.delete()File.delete()

deleteOnExit()deleteOnExit()

<dependency><dependency>
 <groupId>com.google.jimfs</groupId> <groupId>com.google.jimfs</groupId>
 <artifactId>jimfs</artifactId> <artifactId>jimfs</artifactId>

https://blogs.oracle.com/javamagazine/the-joy-of-writing-command-line-utilities-finding-duplicate-files-part-1
https://github.com/google/jimfs
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/nio/file/WatchService.html

Jimfs also depends on the Google Guava library, which is an
excellent omnibus library filled with a treasure trove of goodies
that will make your work considerably simpler.

You add Guava to your POM file with the following:

When creating a jimfs file system, you can specify whether it
should imitate a UNIX- or Windows-style file system. They differ
in the naming conventions and attribute usage, so choose the
one you prefer. The Windows file system implements some of
Windows’ quirks, such as not permitting the creation of a file in
the root directory.

Here is the code for creating a file system in jimfs, then creating
a file, writing to it, and reading back the contents:

In the first executable line, I create the file system—in this case
a Windows model. However, I could also have created a UNIX-
style file system even though I’m running on Windows. Then
within the try-block, I create a directory named and within it,
I create a file imaginatively named . Jimfs
implements strictly the NIO file operations, so there are none of
the usual operations. Rather, as you see in this code,

 <version>1.2</version> <version>1.2</version>
</dependency></dependency>

<dependency><dependency>
 <groupId>com.google.guava</groupId> <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId> <artifactId>guava</artifactId>
 <version>30.1-jre</version> <version>30.1-jre</version>
</dependency></dependency>

Path path1;Path path1;

// For a simple file system with Windows-styl// For a simple file system with Windows-styl
FileSystem fs = Jimfs.newFileSystem(ConfigurFileSystem fs = Jimfs.newFileSystem(Configur

try { // create foo/myfile.txttry { // create foo/myfile.txt
 Path filePath = fs.getPath("foo"); Path filePath = fs.getPath("foo");
 Files.createDirectory(filePath); Files.createDirectory(filePath);
 path1 = filePath.resolve("myfile.txt"); path1 = filePath.resolve("myfile.txt");

 Files.write(path1, "content for file1".g Files.write(path1, "content for file1".g

 byte[] bytesWritten = readAllBytes(path1 byte[] bytesWritten = readAllBytes(path1
 if(bytesWritten.length != "content for f if(bytesWritten.length != "content for f
 System.err.println("error in content System.err.println("error in content
 } }
 else { else {
 System.out.println("Contents OK"); System.out.println("Contents OK");
 } }
}}
catch(IOException ioe) {catch(IOException ioe) {
 System.err.println("error creating or wr System.err.println("error creating or wr
}}

foofoo

myfile.txtmyfile.txt

FileFile

https://github.com/google/guava

Andrew Binstock
Andrew Binstock (@platypusguy) was
formerly the editor in chief of Java
Magazine. Previously, he was the editor
of Dr. Dobb's Journal. He co-founded the
company behind the open-source iText
PDF library, which was acquired in 2015.
His book on algorithm implementation in C
went through 16 printings before joining the
long tail. Previously, he was the editor in
chief of UNIX Review and, earlier, the
founding editor of the C Gazette. He lives in
Silicon Valley with his wife. When not
coding or editing, he studies piano.

Share this Page

reading and writing to the files is done in arrays of bytes that NIO
expects. In addition, an attempt to use the
conversion results in an exception.

Jimfs was originally written for testing purposes inside Google,
but according to its author, Colin Decker, it is also used for
production purposes. For example, you can use it to write data
to a file that will later be converted into a zip file and written to
disk. I would expect other tasks, such as holding confidential
data that needs to be encrypted before being stored to disk,
would find jimfs useful as well.

Conclusion

In this article, I’ve shown how to use temporary files in their
primary role: as stand-ins for testing against real files. I’ve
illustrated their use in two different versions of JUnit, and I’ve
also shown how to use temporary files outside of the testing
domain, including standard Java SE options and an in-memory
file system. If I have succeeded, I have removed any cloak of
uncertainty around using temporary files and they should now be
a standard part of your toolbox both in the architecture of
applications and in testing.

Dig deeper

Paths.toFile()Paths.toFile()

Beyond the simple: An in-depth look at JUnit 5’s nested
tests, dynamic tests, parameterized tests, and extensions

How to test Java microservices with Pact

The Java tutorials: Watching a directory for changes

Facebook

Twitter

LinkedIn

Email

https://blogs.oracle.com/javamagazine/andrew-binstock
https://blogs.oracle.com/javamagazine/andrew-binstock
https://www.twitter.com/platypusguy
https://blogs.oracle.com/javamagazine/beyond-the-simple-an-in-depth-look-at-junit-5s-nested-tests-dynamic-tests-parameterized-tests-and-extensions
https://blogs.oracle.com/javamagazine/how-to-test-java-microservices-with-pact
https://docs.oracle.com/javase/tutorial/essential/io/notification.html

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

