
TESTING

Migrating from JUnit 4 to JUnit 5:
Important Differences and Benefits
Improvements and new features make
JUnit 5 compelling.
by Brian McGlauflin

April 2, 2020

JUnit 5 is a powerful and flexible update to the JUnit framework, and it
provides a variety of improvements and new features to organize and
describe test cases, as well as help in understanding test results.
Updating to JUnit 5 is quick and easy: Just update your project
dependencies and start using the new features.

If you’ve been using JUnit 4 for a while, migrating tests may seem like a
daunting task. The good news is that you probably don’t need to convert
any tests; JUnit 5 can run JUnit 4 tests using the library.

That said, here are four solid reasons to start writing new tests in JUnit 5:

Switching from JUnit 4 to JUnit 5 is quite simple, even if you have
existing JUnit 4 tests. Most organizations don’t need to convert old JUnit
tests to JUnit 5 unless new features are needed. When that’s the case,
use these steps:

1. Update your libraries and build systems from JUnit 4 to JUnit 5. Be
sure to include the junit-vintage-engine artifact in your test runtime
path to allow your existing tests to execute.

2. Start building new tests using the new JUnit 5 constructs.

3. (Optional) Convert JUnit tests to JUnit 5.

Important Differences

JUnit 5 tests look mostly the same as JUnit 4 tests, but there are a few
differences you should be aware of.

Vintage

JUnit 5 leverages features from Java 8 or later, such as lambda
functions, making tests more powerful and easier to maintain.



JUnit 5 has added some very useful new features for describing,
organizing, and executing tests. For instance, tests get better
display names and can be organized hierarchically.



JUnit 5 is organized into multiple libraries, so only the features you
need are imported into your project. With build systems such as
Maven and Gradle, including the right libraries is easy.



JUnit 5 can use more than one extension at a time, which JUnit 4
could not (only one runner could be used at a time). This means
you can easily combine the Spring extension with other extensions
(such as your own custom extension).



Migrating from JUnit 4 to JUnit 5:
Important Differences and Benefits

Important Differences

Extending JUnit

Converting a Test to JUnit 5

New Features

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/testing-3
https://junit.org/junit5/
https://junit.org/junit5/docs/current/user-guide/#overview-getting-started
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://www.oracle.com/

Imports. JUnit 5 uses the new package for its
annotations and classes. For example, becomes

.

Annotations. The annotation no longer has parameters; each of
the parameters has been moved to a function. For example, here’s how
to indicate that a test is expected to throw an exception in JUnit 4:

In JUnit 5, this has changed to the following:

Similarly, timeouts have changed. Here’s an example in JUnit 4:

In JUnit 5, it changes to the following:

Here are other annotations that have changed:

Assertions. JUnit 5 assertions are now in
. Most of the common

assertions, such as and , look the
same as before, but there are a few differences:

org.junit.jupiter

org.junit.Test

org.junit.jupiter.api.Test

@Test@Test

@Test(expected = Exception.class)@Test(expected = Exception.class)
public void testThrowsException() throws Exception {public void testThrowsException() throws Exception {
 // ... // ...
}}

@Test@Test
void testThrowsException() throws Exception {void testThrowsException() throws Exception {
 Assertions.assertThrows(Exception.class, () -> { Assertions.assertThrows(Exception.class, () -> {
 //... //...
 }); });
}}

@Test(timeout = 10)@Test(timeout = 10)
public void testFailWithTimeout() throws Interruptedpublic void testFailWithTimeout() throws Interrupted
 Thread.sleep(100); Thread.sleep(100);
}}

@Test@Test
void testFailWithTimeout() throws InterruptedExceptivoid testFailWithTimeout() throws InterruptedExcepti
 Assertions.assertTimeout(Duration.ofMillis(10), Assertions.assertTimeout(Duration.ofMillis(10),
}}

 has become .@Before@Before @BeforeEach@BeforeEach

 has become .@After@After @AfterEach@AfterEach

 has become .@BeforeClass@BeforeClass @BeforeAll@BeforeAll

 has become .@AfterClass@AfterClass @AfterAll@AfterAll

 has become .@Ignore@Ignore @Disabled@Disabled

 has become .@Category@Category @Tag@Tag

 and are gone; use and
 instead.

@Rule@Rule @ClassRule@ClassRule @ExtendWith@ExtendWith
@RegisterExtension@RegisterExtension

org.junit.jupiter.api.Assertions

assertEquals()assertEquals() assertNotNull()assertNotNull()

The error message is now the last argument, for example:
 is now
.


assertEquals("my message", 1, 2)assertEquals("my message", 1, 2)
assertEquals(1, 2, "my message")assertEquals(1, 2, "my message")

Most assertions now accept a lambda that constructs the error
message, which is called only when the assertion fails.



Note that you can continue to use assertions from JUnit 4 in a JUnit 5
test if you prefer.

Assumptions. Assumptions have been moved to

.

The same assumptions exist, but they now support
as well as Hamcrest matchers to match conditions. Lambdas (of type

) can be used to execute code when the condition is met.

For example, here’s an example in JUnit 4:

In JUnit 5, it becomes this:

Extending JUnit

In JUnit 4, customizing the framework generally meant using an
 annotation to specify a custom runner. Using multiple runners

was problematic and usually required chaining or using an . This
has been simplified and improved in JUnit 5 using extensions.

For example, building tests with the Spring framework looked like this in
JUnit 4:

With JUnit 5, you include the Spring extension instead:

The annotation is repeatable, meaning that multiple
extensions can be combined easily.

You can also define your own custom extensions easily by creating a
class that implements one or more interfaces from

 and have
replaced the annotation (there is an
annotation in JUnit 5, but it works differently than in JUnit 4).

assertTimeout()assertTimeout() assertTimeoutPreemptively()assertTimeoutPreemptively()
@Timeout@Timeout @Timeout@Timeout

There are several new assertions, described below.

org.junit.jupiter.api.Assumptions

BooleanSupplierBooleanSupplier

ExecutableExecutable

@Test@Test
public void testNothingInParticular() throws Exceptipublic void testNothingInParticular() throws Excepti
 Assume.assumeThat("foo", is("bar")); Assume.assumeThat("foo", is("bar"));
 assertEquals(...); assertEquals(...);
}}

@Test@Test
void testNothingInParticular() throws Exception {void testNothingInParticular() throws Exception {
 Assumptions.assumingThat("foo".equals(" bar"), Assumptions.assumingThat("foo".equals(" bar"),
 assertEquals(...); assertEquals(...);
 }); });
}}

@RunWith@RunWith

@Rule@Rule

@RunWith(SpringJUnit4ClassRunner.class)@RunWith(SpringJUnit4ClassRunner.class)
public class MyControllerTest {public class MyControllerTest {
 // ... // ...
}}

@ExtendWith(SpringExtension.class)@ExtendWith(SpringExtension.class)
class MyControllerTest {class MyControllerTest {
 // ... // ...
}}

@ExtendWith@ExtendWith

http://hamcrest.org/

 and then adding it to your test
with .

Converting a Test to JUnit 5

To convert an existing JUnit 4 test to JUnit 5, use the following steps,
which should work for most tests:

1. Update imports to remove JUnit 4 and add JUnit 5. For instance,
update the package name for the annotation, and update both
the package and class name for assertions (from to

). Don’t worry yet if there are compilation errors,
because completing the following steps should resolve them.

2. Globally replace old annotations and class names with new ones.
For example, replace all with and all

 with .

3. Update assertions; any assertions that provide a message need to
have the message argument moved to the end (pay special attention
when all three arguments are strings!). Also, update timeouts and
expected exceptions (see above for examples).

4. Update assumptions if you are using them.

5. Replace any instances of , , or with
the appropriate annotations. You may need to find
updated documentation online for the extensions you’re using for
examples.

Note that migrating parameterized tests will require a little more
refactoring, especially if you have been using JUnit 4
(the format of JUnit 5 parameterized tests is much closer to

).

New Features

So far, I’ve discussed only existing functionality and how it has changed.
But JUnit 5 offers plenty of new features to make your tests more
descriptive and maintainable.

Display names. With JUnit 5, you can add the
annotation to classes and methods. The name is used when generating
reports, which makes it easier to describe the purpose of tests and track
down failures, for example:

You can also use a display name generator to process your test class or
method to generate test names in any format you like. See the JUnit
document for specifics and examples.

Assertions. JUnit 5 introduced some new assertions, such as the
following:

org.junit.jupiter.api.extension

@ExtendWith@ExtendWith

@Test@Test

Asserts

Assertions

@Before@Before @BeforeEach@BeforeEach

AssertsAsserts AssertionsAssertions

@RunWith@RunWith @Rule@Rule @ClassRule@ClassRule

@ExtendWith@ExtendWith

Parameterized

JUnitParams

@DisplayName@DisplayName

@DisplayName("Test MyClass")@DisplayName("Test MyClass")
class MyClassTest {class MyClassTest {
 @Test @Test
 @DisplayName("Verify MyClass.myMethod returns tr @DisplayName("Verify MyClass.myMethod returns tr
 void testMyMethod() throws Exception { void testMyMethod() throws Exception {
 // ... // ...
 } }
}}

 performs a deep verification of two
iterables using .

assertIterableEquals()assertIterableEquals()
equals()equals()

https://junit.org/junit5/docs/current/user-guide/#writing-tests-display-name-generator

Nested tests. Test suites in JUnit 4 were useful, but nested tests in JUnit
5 are easier to set up and maintain, and they better describe the
relationships between test groups, for example:

In the example above, you can see that I use a single class for all tests
related to . I can verify that the class is instantiable in the outer
test class, and I use a nested inner class for all tests where is
instantiated and initialized. The method applies only to
tests in the nested class.

The annotations for the tests and classes indicate both
the purpose and organization of tests. This helps you to understand the
test report, because you can see the conditions under which the test is
performed (with initialization) and what the test is
verifying (returns true). This is a good test design pattern for
JUnit 5.

Parameterized tests. Test parameterization existed in JUnit 4, with built-
in libraries such as or third-party libraries such
as . In JUnit 5, parameterized tests are completely built in
and adopt some of the best features from and

, for example:

 verifies that two lists of strings match; it
accepts regular expressions in the argument.

assertLinesMatch()assertLinesMatch()
expectedexpected

 groups multiple assertions together. The added
benefit is that all assertions are performed, even if individual
assertions fail.

assertAll()assertAll()

 and have replaced
the property in the annotation.

assertThrows()assertThrows() assertDoesNotThrow()assertDoesNotThrow()
expectedexpected @Test@Test

@DisplayName("Verify MyClass")@DisplayName("Verify MyClass")
class MyClassTest {class MyClassTest {
 MyClass underTest; MyClass underTest;

 @Test @Test
 @DisplayName("can be instantiated") @DisplayName("can be instantiated")
 public void testConstructor() throws Exception { public void testConstructor() throws Exception {
 new MyClass(); new MyClass();
 } }
 @Nested @Nested
 @DisplayName("with initialization") @DisplayName("with initialization")
 class WithInitialization { class WithInitialization {
 @BeforeEach @BeforeEach
 void setup() { void setup() {
 underTest = new MyClass(); underTest = new MyClass();
 underTest.init("foo"); underTest.init("foo");
 } }

 @Test @Test
 @DisplayName("myMethod returns true") @DisplayName("myMethod returns true")
 void testMyMethod() { void testMyMethod() {
 assertTrue(underTest.myMethod()); assertTrue(underTest.myMethod());
 } }
 } }
}}

MyClassMyClass

MyClassMyClass

@BeforeEach@BeforeEach

@DisplayNames@DisplayNames

Verify MyClassVerify MyClass

myMethodmyMethod

JUnit4Parameterized

JUnitParams

JUnit4Parameterized

JUnitParams

@ParameterizedTest@ParameterizedTest
@ValueSource(strings = {"foo", "bar"})@ValueSource(strings = {"foo", "bar"})
@NullAndEmptySource@NullAndEmptySource
void myParameterizedTest(String arg) {void myParameterizedTest(String arg) {
 underTest.performAction(arg); underTest.performAction(arg);
}}

Brian McGlauflin
Brian McGlauflin is a software engineer at Parasoft
with experience in full stack development using
Spring and Android, API testing, and service
virtualization. He is currently focused on automated
software testing for Java applications with Parasoft
Jtest.

The format looks like , where parameters are passed to
the test method directly. Note that the values to test with can come from
several different sources. Here, I just have a single parameter so it’s easy
to use an . and indicate
that you want to add an empty string and a null, respectively, to the list of
values to run with (and you can combine them, as shown above, if you
are using both). There are multiple other value sources, such as

 and (a custom value provider). If
you need more than one parameter, you can also use
or .

Another test type added in JUnit 5 is , where a single
test is repeated a specified number of times.

Conditional test execution. JUnit 5 provides the
 extension API to enable or disable a test or

container (test class) conditionally. This is like using on a
test but it can define custom conditions. There are multiple built-in
conditions, such as these:

Test templates. Test templates are not regular tests; they define a set of
steps to perform, which can then be executed elsewhere using a specific
invocation context. This means that you can define a test template once,
and then build a list of invocation contexts at runtime to run that test with.
For details and examples, see the documentation.

Dynamic tests. Dynamic tests are like test templates; the tests to run are
generated at runtime. However, while test templates are defined with a
specific set of steps and run multiple times, dynamic tests use the same
invocation context but can execute different logic. One use for dynamic
tests would be to stream a list of abstract objects and perform a separate
set of assertions for each based on their concrete types. There are good
examples in the documentation.

Conclusion

Although you probably won’t need to convert your old JUnit 4 tests to
JUnit 5 unless you want to use new JUnit 5 features, there are
compelling reasons to switch to JUnit 5. For example, JUnit 5 tests are
more powerful and easier to maintain. In addition, JUnit 5 provides many
useful new features, only the features you use are imported, and you can
use more than one extension and even create your own custom
extensions. Together, these changes and new features provide a
powerful and flexible update to the JUnit framework.

JUnitParams

@ValueSource@ValueSource @EmptySource@EmptySource @NullSource@NullSource

@EnumSource@EnumSource @ArgumentsSource@ArgumentsSource

@MethodSource@MethodSource

@CsvSource@CsvSource

@RepeatedTest@RepeatedTest

ExecutionConditionExecutionCondition

@Disabled@Disabled

 and : Enables or disables a test
only on specified operating systems

@EnabledOnOs@EnabledOnOs @DisabledOnOs@DisabledOnOs

 and : Specifies the test should
be enabled or disabled for particular versions of Java

@EnabledOnJre@EnabledOnJre @DisabledOnJre@DisabledOnJre

: Enables a test based on the value
of a JVM system property

@EnabledIfSystemProperty@EnabledIfSystemProperty

: Uses scripted logic to enable a test if scripted
conditions are met

@EnabledIf@EnabledIf

https://blogs.oracle.com/javamagazine/brian-mcglauflin
https://blogs.oracle.com/javamagazine/brian-mcglauflin
https://junit.org/junit5/docs/current/user-guide/#extensions-test-templates
https://junit.org/junit5/docs/current/user-guide/#writing-tests-dynamic-tests

Share this Page

 
Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

