
JAVA 15

Diving into Java records:
Serialization, marshaling, and
bean state validation
Existing frameworks and libraries that
access instance variables through
getters and setters won’t work with
records. Here’s what to do.

by Frank Kiwy

November 6, 2020

Download a PDF of this article

Records were first introduced in Java 14 as a preview feature.
Recently, there has been a second preview with the arrival of
Java 15. Record classes are therefore not yet a regular part of
the JDK and they are still subject to change.

Java records were introduced in Java Magazine by Ben Evans in
his article “Records come to Java.” If you are new to records,
you can get a quick overview of what records are in the “Java
language updates: Record classes” documentation.

In brief, the main goal of record classes is to model plain data
aggregates with less ceremony than normal classes. A record
class declares a sequence of fields, and may also declare
methods. The appropriate , , ,

, and methods are created automatically.
The fields are final because the class is intended to serve as a
simple data carrier.

A record class declaration consists of a name, a header (which
lists the fields of the class, known as its components), and a
body. The following is an example of a record declaration:

constructorconstructor accessoraccessor equalsequals

hashCodehashCode toStringtoString

Diving into Java records:
Serialization, marshaling, and
bean state validation

Introspection

Serialization and
deserialization

Marshaling and unmarshaling

Bean validation

Byte Buddy

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/java-15-2
https://app.compendium.com/api/post_attachments/9e10dec6-9146-4105-9f53-93cc9d6890c3/view
https://blogs.oracle.com/javamagazine/records-come-to-java
https://docs.oracle.com/en/java/javase/15/language/records.html
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

In this article, I will focus on serialization and deserialization,
marshaling and unmarshaling, and state validation of records.
But first, take a look at the class members of a record using
Java’s Reflection API.

Introspection

With the introduction of records to Java, two new methods have
been added to :

I’ll use the latter with the record class declared above to get its
components:

Here’s the output:

As you can see, the components are the variables (type and
name pairs) specified in the header of the record declaration.
Now, look at the record fields that are derived from the
components:

The following is the output:

record RectangleRecord(double length, double record RectangleRecord(double length, double
}}

java.lang.Classjava.lang.Class

, which is similar to except that it
returns if the class was declared as a record

isRecord()isRecord() isEnum()isEnum()
truetrue

, which returns an array of
 objects

corresponding to the record components

getRecordComponents()getRecordComponents()
java.lang.reflect.RecordComponentjava.lang.reflect.RecordComponent

System.out.println("Record components:");System.out.println("Record components:");
Arrays.asList(RectangleRecord.class.getRecordArrays.asList(RectangleRecord.class.getRecord
 .forEach(System.out::println); .forEach(System.out::println);

Record components:Record components:
double lengthdouble length
double widthdouble width

System.out.println("Record fields:");System.out.println("Record fields:");
Arrays.asList(RectangleRecord.class.getDeclarArrays.asList(RectangleRecord.class.getDeclar
 .forEach(System.out::println); .forEach(System.out::println);

Record fields:Record fields:
private final double record.test.RectangleRecprivate final double record.test.RectangleRec
private final double record.test.RectangleRecprivate final double record.test.RectangleRec

Note that the fields are generated by the compiler with the
 and modifiers. The field accessors and the

constructor parameters are also derived from the record
components, for example:

Here’s the output:

Notice that the name of the field accessors does not start with
 and, therefore, does not conform to the JavaBeans

conventions.

(As Brian Goetz wrote in an online thread, “. . . the language has
a responsibility to look forward as well as backward, and balance
the needs of existing code with the needs of new code. Taking a
bad library naming convention and burning it into the language
forever would have been the worse choice.” —Ed)

You’re probably not surprised to not see any methods for setting
the contents of a field, because records are supposed to be
immutable.

Record components can also be annotated in the same way you
would do for constructor or method parameters. For this
purpose, I’ve created a simple annotation such as the following
one:

Be sure to set the retention policy to ; otherwise, the
annotation is discarded by the compiler and will not be present
at runtime. So, this is the modified record declaration with
annotated components:

privateprivate finalfinal

System.out.println("Field accessors:");System.out.println("Field accessors:");
Arrays.asList(RectangleRecord.class.getDeclarArrays.asList(RectangleRecord.class.getDeclar
 .filter(m -> Arrays.stream(RectangleR .filter(m -> Arrays.stream(RectangleR
 .forEach(System.out::println); .forEach(System.out::println);

System.out.println("Constructor parameters:")System.out.println("Constructor parameters:")
Arrays.asList(RectangleRecord.class.getDeclarArrays.asList(RectangleRecord.class.getDeclar
 .forEach(c -> Arrays.asList(c.getPara .forEach(c -> Arrays.asList(c.getPara
 .forEach(System.out::println)); .forEach(System.out::println));

Field accessors:Field accessors:
public double record.test.RectangleRecord.lenpublic double record.test.RectangleRecord.len
public double record.test.RectangleRecord.widpublic double record.test.RectangleRecord.wid
Constructor parameters:Constructor parameters:
double lengthdouble length
double widthdouble width

getget

import java.lang.annotation.Retention;import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)@Retention(RetentionPolicy.RUNTIME)
public @interface MyAnnotation {public @interface MyAnnotation {
}}

RUNTIMERUNTIME

https://mail.openjdk.java.net/pipermail/amber-dev/2020-August/006414.html

The next step is to retrieve the annotation on the record
components via reflection, for example:

The following is the output:

As expected, the annotation is present on both components
specified in the header of the record.

For records, however, the annotations that you add to the
components are also propagated to the derived fields,
accessors, and constructor parameters. I will quickly verify this
by printing out the annotations of the component-derived
artifacts:

Here are annotations on record fields:

And here is the output:

Here are annotations on field accessors:

And here is the output:

record Rectangle(@MyAnnotation double length,record Rectangle(@MyAnnotation double length,
}}

System.out.println("Record component annotatiSystem.out.println("Record component annotati
Arrays.asList(RectangleRecord.class.getRecordArrays.asList(RectangleRecord.class.getRecord
 .forEach(c -> Arrays.asList(c.getDecl .forEach(c -> Arrays.asList(c.getDecl
 .forEach(System.out::println)); .forEach(System.out::println));

Record component annotations:Record component annotations:
@record.test.MyAnnotation()@record.test.MyAnnotation()
@record.test.MyAnnotation()@record.test.MyAnnotation()

System.out.println("Record field annotations:System.out.println("Record field annotations:
Arrays.asList(RectangleRecord.class.getDeclarArrays.asList(RectangleRecord.class.getDeclar
 .forEach(f -> Arrays.asList(f.getDecl .forEach(f -> Arrays.asList(f.getDecl
 .forEach(System.out::println)); .forEach(System.out::println));

Record field annotations:Record field annotations:
@record.test.MyAnnotation()@record.test.MyAnnotation()
@record.test.MyAnnotation()@record.test.MyAnnotation()

System.out.println("Field accessor annotationSystem.out.println("Field accessor annotation
Arrays.asList(RectangleRecord.class.getDeclarArrays.asList(RectangleRecord.class.getDeclar
 .filter(m -> Arrays.stream(RectangleR .filter(m -> Arrays.stream(RectangleR
 .forEach(m -> Arrays.asList(m.getDecl .forEach(m -> Arrays.asList(m.getDecl
 .forEach(System.out::println)); .forEach(System.out::println));

Finally, here are annotations on record constructor parameters:

And the following is the output:

As seen above, if you put an annotation on a record component,
it will be automatically propagated to the derived artifacts.
However, this behavior is not always desirable, because you
might want the annotation to be present only on record fields, for
instance. That’s why you can change this behavior by specifying
the target of an annotation.

For example, if you want an annotation to be present only on the
record fields, you would have to add a annotation with a
parameter of :

Rerunning the above code yields this output:

As you can see, the annotation is now present only on the
record fields. In the same way, you can state that the annotation
should be present only on the accessors (

Field accessor annotations:Field accessor annotations:
@record.test.MyAnnotation()@record.test.MyAnnotation()
@record.test.MyAnnotation()@record.test.MyAnnotation()

System.out.println("Constructor parameter annSystem.out.println("Constructor parameter ann
Arrays.asList(RectangleRecord.class.getDeclarArrays.asList(RectangleRecord.class.getDeclar
 .forEach(c -> Arrays.asList(c.getPara .forEach(c -> Arrays.asList(c.getPara
 .forEach(p -> Arrays.asList(p.getDecl .forEach(p -> Arrays.asList(p.getDecl
 .forEach(System.out::println))); .forEach(System.out::println)));

Constructor parameter annotations:Constructor parameter annotations:
@record.test.MyAnnotation()@record.test.MyAnnotation()
@record.test.MyAnnotation()@record.test.MyAnnotation()

TargetTarget

ElementType.FIELDElementType.FIELD

import java.lang.annotation.ElementType;import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;import java.lang.annotation.Target;

@Target(ElementType.FIELD)@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)@Retention(RetentionPolicy.RUNTIME)
public @interface MyAnnotation {public @interface MyAnnotation {
}}

Record component annotations:Record component annotations:
Record field annotations:Record field annotations:
@record.test.MyAnnotation()@record.test.MyAnnotation()
@record.test.MyAnnotation()@record.test.MyAnnotation()
Field accessor annotations:Field accessor annotations:
Constructor parameter annotations:Constructor parameter annotations:

), or the constructor parameters (
), or any combination of those two

and the record fields.

Be aware that in any of these cases, you must put the
annotation always on the record components, because the
fields, accessors, and constructor parameters simply don’t exist
in a record declaration. Those are generated and annotated
(according to the element types specified in the annotation
declaration) by the compiler and, thus, are present only in the
compiled record class.

Serialization and deserialization

Because they are ordinary classes, records can also be
serialized and deserialized. The only thing you need to do is to
add the interface to the record’s
header, for example:

Here’s the code to serialize a record:

And the following code can be used to deserialize a record:

This is the output:

ElementType.METHODElementType.METHOD

ElementType.PARAMETERElementType.PARAMETER

java.io.Serializablejava.io.Serializable

record RectangleRecord(double length, double record RectangleRecord(double length, double
}}

private static final List<RectangleRecord> SAprivate static final List<RectangleRecord> SA
 new RectangleRecord(1, 5), new RectangleRecord(1, 5),
 new RectangleRecord(2, 4), new RectangleRecord(2, 4),
 new RectangleRecord(3, 3), new RectangleRecord(3, 3),
 new RectangleRecord(4, 2), new RectangleRecord(4, 2),
 new RectangleRecord(5, 1) new RectangleRecord(5, 1)
););

try (try (
 var fos = new FileOutputStream("C:/Te var fos = new FileOutputStream("C:/Te
 var oos = new ObjectOutputStream(fos) var oos = new ObjectOutputStream(fos)
 oos.writeObject(SAMPLE_RECORDS); oos.writeObject(SAMPLE_RECORDS);
}}

try (try (
 var fis = new FileInputStream("C:/Tem var fis = new FileInputStream("C:/Tem
 var ois = new ObjectInputStream(fis)) var ois = new ObjectInputStream(fis))
 List<RectangleRecord> records = (List<Rec List<RectangleRecord> records = (List<Rec
 records.forEach(System.out::println); records.forEach(System.out::println);
 assertEquals(SAMPLE_RECORDS, records); assertEquals(SAMPLE_RECORDS, records);
}}

RectangleRecord[length=1.0, width=5.0]RectangleRecord[length=1.0, width=5.0]
RectangleRecord[length=2.0, width=4.0]RectangleRecord[length=2.0, width=4.0]
RectangleRecord[length=3.0, width=3.0]RectangleRecord[length=3.0, width=3.0]

However, there’s one major difference compared to ordinary
classes: When a record is deserialized, its fields are set, via the
record constructor, to the values deserialized from the stream.
By contrast, a normal class is first instantiated by invoking the
no-argument constructor, and then its fields are set via reflection
to the values deserialized from the stream.

Thus, records are deserialized using their constructor. This
behavior allows you to add invariants to the constructor to check
the validity of the deserialized data. Since this is not possible
with normal classes, there’s always a certain risk of deserializing
bad or even hazardous data, which should not be
underestimated, especially if the data comes from external
sources.

Note that this code is using the record’s compact constructor
here, so there’s no need to specify the parameters or to set the
record fields explicitly. If you now deserialize the previously
serialized records, every single instance is supposed to have a
valid state; otherwise, an is
thrown by the record constructor.

You can verify this by modifying the serialized data of just one
record in such a way that it doesn’t conform to the validation
logic anymore:

.

If you now execute the deserialization code from above, you’ll
get the expected

RectangleRecord[length=4.0, width=2.0]RectangleRecord[length=4.0, width=2.0]
RectangleRecord[length=5.0, width=1.0]RectangleRecord[length=5.0, width=1.0]

import java.io.Serializable;import java.io.Serializable;
import java.lang.IllegalArgumentException;import java.lang.IllegalArgumentException;
import java.lang.StringBuilder;import java.lang.StringBuilder;

public record RectangleRecord(double length, public record RectangleRecord(double length,

 public RectangleRecord { public RectangleRecord {
 StringBuilder builder = new StringBui StringBuilder builder = new StringBui
 if (length <= 0) { if (length <= 0) {
 builder.append("\nLength must be builder.append("\nLength must be
 } }
 if (width <= 0) { if (width <= 0) {
 builder.append("\nWidth must be g builder.append("\nWidth must be g
 } }
 if (builder.length() > 0) { if (builder.length() > 0) {
 throw new IllegalArgumentExceptio throw new IllegalArgumentExceptio
 } }
 } }

}}

IllegalArgumentExceptionIllegalArgumentException

RectangleRecord[length=0.0, width=-5.0]RectangleRecord[length=0.0, width=-5.0]

IllegalArgumentException:IllegalArgumentException:
java.lang.IllegalArgumentException: java.lang.IllegalArgumentException:

If you tried the same process with a normal class, no exception
would occur, since the class’s constructor wouldn’t be called.
The object would be deserialized with the erroneous data,
without anyone noticing.

Look at the following , which is the
counterpart of the :

Length must be greater than zero: 0.0Length must be greater than zero: 0.0
Width must be greater than zero: -5.0Width must be greater than zero: -5.0
 at record.test.RectangleRecord.<init>(Recta at record.test.RectangleRecord.<init>(Recta
 at java.base/java.io.ObjectInputStream.read at java.base/java.io.ObjectInputStream.read

RectangleClassRectangleClass

RectangleRecordRectangleRecord

import java.io.Serializable;import java.io.Serializable;
import java.util.Objects;import java.util.Objects;

public class RectangleClass implements Serialpublic class RectangleClass implements Serial

 private final double width; private final double width;
 private final double length; private final double length;

 public RectangleClass(double width, doubl public RectangleClass(double width, doubl
 StringBuilder builder = new StringBui StringBuilder builder = new StringBui
 if (length <= 0) { if (length <= 0) {
 builder.append("\nLength must be builder.append("\nLength must be
 } }
 if (width <= 0) { if (width <= 0) {
 builder.append("\nWidth must be g builder.append("\nWidth must be g
 } }
 if (builder.length() > 0) { if (builder.length() > 0) {
 throw new IllegalArgumentExceptio throw new IllegalArgumentExceptio
 } }
 this.width = width; this.width = width;
 this.length = length; this.length = length;
 } }

 @Override @Override
 public String toString() { public String toString() {
 return "RectangleClass[" + "width=" + return "RectangleClass[" + "width=" +
 } }

 @Override @Override
 public int hashCode() { public int hashCode() {
 return Objects.hash(width, length); return Objects.hash(width, length);
 } }

 @Override @Override
 public boolean equals(Object obj) { public boolean equals(Object obj) {
 if (this == obj) { if (this == obj) {
 return true; return true;
 } }
 if (obj == null) { if (obj == null) {
 return false; return false;
 } }
 if (getClass() != obj.getClass()) { if (getClass() != obj.getClass()) {
 return false; return false;
 } }
 RectangleClass other = (RectangleClas RectangleClass other = (RectangleClas
 return Objects.equals(length, other.l return Objects.equals(length, other.l
 } }

 public double width() { public double width() {
 return width; return width;

Although the constructor of the contains the
same validation logic as the constructor of the

, it is not called during the deserialization
process and, therefore, cannot prevent the creation of objects
with invalid state.

Marshaling and unmarshaling

Just like normal classes, records can also be unmarshaled from
and marshaled to a format of your choice, such as JSON, XML,
or CSV. If you’d like to use an existing library to do so, be aware
that it has to access the class fields via the

 method and not
via the getter and setter methods, because records don’t have
those methods.

However, you should know about some restrictions. In JDK 15’s
second preview of Java records, a record’s field can no longer
be accessed via the

 method (which
was possible in JDK 14).

The reason for this restriction is to ensure the immutability of
records by preventing this kind of backdoor manipulation by
libraries. However, most of the current libraries aren’t aware of
records yet. The libraries therefore treat records as ordinary
classes and try to set the field values via the

 method. That’s
not going to work.

Here is an example that uses the popular Gson library to
demonstrate the above restriction. With this library, marshaling
to JSON should work without any problem because Gson reads
the record data using the method:

 } }

 public double length() { public double length() {
 return length; return length;
 } }

}}

RectangleClassRectangleClass

RectangleRecordRectangleRecord

Field.set(Object obj, Object value)Field.set(Object obj, Object value)

Field.set(Object obj, Object value)Field.set(Object obj, Object value)

Field.set(Object obj, Object value)Field.set(Object obj, Object value)

Field.get(Object obj)Field.get(Object obj)

private static final List<RectangleRecord> SAprivate static final List<RectangleRecord> SA
 new RectangleRecord(1, 5), new RectangleRecord(1, 5),
 new RectangleRecord(2, 4), new RectangleRecord(2, 4),
 new RectangleRecord(3, 3), new RectangleRecord(3, 3),
 new RectangleRecord(4, 2), new RectangleRecord(4, 2),
 new RectangleRecord(5, 1) new RectangleRecord(5, 1)
););

try (Writer writer = new FileWriter("C:/Temp/try (Writer writer = new FileWriter("C:/Temp/
 new Gson().toJson(SAMPLE_RECORDS, writer) new Gson().toJson(SAMPLE_RECORDS, writer)
}}

https://github.com/google/gson

And here is the file output:

But a problem will occur during the unmarshaling process in
which Gson tries to set the field values using the

 method:

The output:

Note that write access to the field
has been prevented by throwing a

. This means that the
current libraries will need to be changed to take this restriction
into account when dealing with records.

At the present time, the only way to set the field values of a
record is by using its constructor. And if the constructor
arguments are all immutable themselves (for example, when
using primitive data types), it will indeed become very hard to
change a record’s state. Fortunately, this restriction also helps
ensure consistent state validation of records, as discussed in the
earlier section about deserialization.

If you currently have to unmarshal records from JSON or any
other format, you’ll probably have to write your own unmarshaler.
Most libraries won’t support explicit marshaling or unmarshaling
for records until they have become a regular Java feature.

As long as they’re not, they are still subject to change. Record
field access has been restricted in JDK 15 by no longer allowing
the fields to be changed via reflection, something that was still
possible in JDK 14 (the first preview of records). That’s a change
in behavior that should not be neglected—especially not by
library designers—as everyone looks forward to JDK 16.

Bean validation

You may think that records can’t be subject to the bean
validation specification (also known as JSR 303) because they

[{"length":1.0,"width":5.0},{"length":2.0,"wi[{"length":1.0,"width":5.0},{"length":2.0,"wi

Field.set(Object obj, Object value)Field.set(Object obj, Object value)

try (Reader reader = new FileReader("C:/Temp/try (Reader reader = new FileReader("C:/Temp/
 List<RectangleRecord> records = new Gson(List<RectangleRecord> records = new Gson(
 records.forEach(System.out::println); records.forEach(System.out::println);
}}

java.lang.IllegalAccessException: Can not setjava.lang.IllegalAccessException: Can not set
 at java.base/jdk.internal.reflect.UnsafeFie at java.base/jdk.internal.reflect.UnsafeFie
 at java.base/jdk.internal.reflect.UnsafeFie at java.base/jdk.internal.reflect.UnsafeFie
 at java.base/jdk.internal.reflect.UnsafeQua at java.base/jdk.internal.reflect.UnsafeQua
 at java.base/java.lang.reflect.Field.set(Fi at java.base/java.lang.reflect.Field.set(Fi

RectangleRecord.lengthRectangleRecord.length

java.lang.IllegalAccessExceptionjava.lang.IllegalAccessException

https://beanvalidation.org/1.0/spec/

do not adhere to the JavaBeans standard. That’s only partly
true. A record’s state cannot be validated through its getters or
setters, because records don’t have any getters or setters.
However, a record’s state can very well be validated via its
constructor parameters or its fields.

The Bean Validation API defines a way for expressing and
validating constraints using Java annotations. Because these
annotations are reusable, they help to avoid code duplication
and, thus, contribute to more-concise and less error-prone code.
By putting constraint annotations on the components of a record,
you can enforce constraint validation and guarantee that a
record’s state is always valid. Since records are immutable, you
need to validate the constraints only once when you create a
record instance. If no constraints are violated, the created
instance always meets its invariants.

The following example shows how a record’s state can be
validated. To do so, I’m using the bean validation reference
implementation, which is the Hibernate Validator.

But first, I’ll add the necessary dependencies with the help of a
favorite build tool:

Note that the Hibernate Validator also requires an
implementation of the Expression Language to evaluate dynamic
expressions in constraint violation messages.

Now, I’ll add some validation constraints to the
 by the means of the

 annotation,
which checks whether the element is strictly positive (zero
values are considered invalid).

To be able to validate the state of a record, you need an instance
of . But to get a

<dependency><dependency>
 <groupId>org.hibernate</groupId> <groupId>org.hibernate</groupId>
 <artifactId>hibernate-validator</artifact <artifactId>hibernate-validator</artifact
 <version>6.1.5.Final</version> <version>6.1.5.Final</version>
</dependency></dependency>
<dependency><dependency>
 <groupId>org.glassfish</groupId> <groupId>org.glassfish</groupId>
 <artifactId>javax.el</artifactId> <artifactId>javax.el</artifactId>
 <version>3.0.0</version> <version>3.0.0</version>
</dependency></dependency>

RectangleRecordRectangleRecord

@javax.validation.constraints.Positive@javax.validation.constraints.Positive

import javax.validation.constraints.Positive;import javax.validation.constraints.Positive;

public record RectangleRecord(public record RectangleRecord(
 @Positive(message = "Length is ${validate @Positive(message = "Length is ${validate
 @Positive(message = "Width is ${validated @Positive(message = "Width is ${validated
) {}) {}

javax.validation.Validatorjavax.validation.Validator ValidatorValidator

https://hibernate.org/validator/
https://javaee.github.io/tutorial/jsf-el.html

instance, you first have to create a , for
example:

Now you can validate the state of a record instance as follows:

Here’s the output:

The previous example demonstrates that record classes can be
validated like normal classes using the Bean Validation API.
However, since records do not conform to JavaBeans
conventions, their state cannot be validated using getters or
setters, for instance.

Wouldn’t it be better to check the validity of an object’s state
during its construction process and, thus, avoid the creation of
an instance with incorrect data? Well, this is possible by calling
the constraint validation logic in the record’s constructor itself.

In order not to have to add the above validation code to every
single record constructor, I am going to implement it by using an
interface. Because records are final, they cannot extend any
other record class to inherit its methods. But a similar behavior
can be achieved by declaring a method in an
interface, for example:

ValidatorFactoryValidatorFactory

ValidatorFactory factory = Validation.buildDeValidatorFactory factory = Validation.buildDe
Validator validator = factory.getValidator();Validator validator = factory.getValidator();

RectangleRecord rectangle = new RectangleRecoRectangleRecord rectangle = new RectangleReco
Set<ConstraintViolation<RectangleRecord>> conSet<ConstraintViolation<RectangleRecord>> con
constraintViolations.stream().map(ConstraintVconstraintViolations.stream().map(ConstraintV

Length is 0.0 but must be greater than zero.Length is 0.0 but must be greater than zero.
Width is -5.0 but must be greater than zero.Width is -5.0 but must be greater than zero.

defaultdefault

import java.lang.reflect.Constructor;import java.lang.reflect.Constructor;
import java.util.Set;import java.util.Set;
import java.util.stream.Collectors;import java.util.stream.Collectors;
import javax.validation.ConstraintViolation;import javax.validation.ConstraintViolation;
import javax.validation.ConstraintViolationEximport javax.validation.ConstraintViolationEx
import javax.validation.Validator;import javax.validation.Validator;

public interface Validatable {public interface Validatable {

 default void validate(Object... args) { default void validate(Object... args) {
 Validator validator = ValidatorProvid Validator validator = ValidatorProvid
 Constructor constructor = getClass(). Constructor constructor = getClass().
 Set<ConstraintViolation<?>> violation Set<ConstraintViolation<?>> violation
 .validateConstructorParameter .validateConstructorParameter
 if (!violations.isEmpty()) { if (!violations.isEmpty()) {
 String message = violations.strea String message = violations.strea
 .map(ConstraintViolation: .map(ConstraintViolation:
 .collect(Collectors.joini .collect(Collectors.joini
 throw new ConstraintViolationExce throw new ConstraintViolationExce

The following class provides the required instance:

Now, everything’s in place to call the interface’s
method in my record constructor. To do so, I have to specify an
explicit constructor, which allows me to call the
method:

Note that when you provide an explicit constructor, you have to
annotate the constructor parameters and not the components of
the record. You have previously seen that the annotations added
to the components are also propagated to the derived fields,
accessors, and constructor parameters. Regarding the
constructor parameters, this is true only as long as you do not
provide an explicit constructor.

Now, I’ll try to create a instance with an
invalid length and width:

 } }
 } }

}}

ValidatorValidator

import javax.validation.Validation;import javax.validation.Validation;
import javax.validation.Validator;import javax.validation.Validator;
import javax.validation.ValidatorFactory;import javax.validation.ValidatorFactory;

public class ValidatorProvider {public class ValidatorProvider {

 private static final Validator VALIDATOR; private static final Validator VALIDATOR;

 static { static {
 ValidatorFactory factory = Validation ValidatorFactory factory = Validation
 VALIDATOR = factory.getValidator(); VALIDATOR = factory.getValidator();
 } }

 public static Validator getValidator() { public static Validator getValidator() {
 return VALIDATOR; return VALIDATOR;
 } }

}}

validatevalidate

validatevalidate

import javax.validation.constraints.Positive;import javax.validation.constraints.Positive;

public record RectangleRecord(double length, public record RectangleRecord(double length,

 public RectangleRecord (public RectangleRecord (
 @Positive(message = "Length is ${ @Positive(message = "Length is ${
 @Positive(message = "Width is ${v @Positive(message = "Width is ${v
) {) {
 validate(length, width); validate(length, width);
 this.length = length; this.length = length;
 this.width = width; this.width = width;
 } }

}}

RectangleRecordRectangleRecord

Here’s the output:

So, with the validation logic called already at instantiation time
(in the record constructor), you can prevent the creation of an
object with invalid data. In the first bean validation example from
above, you first had to create an object with invalid state before
you were able to validate it. But that’s exactly what you want to
avoid: creating records with invalid state.

However, by providing an explicit canonical constructor, you also
have to explicitly specify all the constructor parameters and set
all the record field values manually. But isn’t that again quite a lot
of clutter that you are trying to avoid when using records? In the
following section, I’m going to show how you can omit an explicit
constructor declaration and still get the record’s data validated
during the instantiation process.

Byte Buddy

Byte Buddy is a library for creating and modifying Java classes
during the runtime of Java applications without the need of a
compiler. Unlike the code generation utilities included in the JDK
(such as the Java Instrumentation API), Byte Buddy allows you
to create arbitrary classes, and it does not require the
implementation of any interface to create runtime proxies.

In addition, it offers a convenient API. Using the API, you can
change classes either manually using a Java agent or during a
build. You can use the library to manipulate existing classes,
create new classes on demand, or intercept method calls, for
instance. Using Byte Buddy does not require you to have an
understanding of Java bytecode or the class file format.
However, you can define custom bytecode, if needed.

The API was designed to be nonintrusive, so Byte Buddy does
not leave any traces in class files after the code manipulation
has taken place. That’s why the generated classes do not
require Byte Buddy on the classpath.

Byte Buddy is a lightweight library that depends only on the
visitor API of the ASM Java bytecode parser library, so it offers
excellent runtime performance.

What I am interested in here is code manipulation at build time,
which can be achieved easily by using a dedicated Maven plugin

RectangleRecord rectangle = new RectangleRecoRectangleRecord rectangle = new RectangleReco

javax.validation.ConstraintViolationExceptionjavax.validation.ConstraintViolationException
Length is 0.0 but must be greater than zero.Length is 0.0 but must be greater than zero.
Width is -5.0 but must be greater than zero.Width is -5.0 but must be greater than zero.
 at record.test.Validatable.validate(Validat at record.test.Validatable.validate(Validat
 at record.test.RectangleRecord.<init>(Recta at record.test.RectangleRecord.<init>(Recta

https://bytebuddy.net/#/

that ships with the Byte Buddy library.

As you probably know, a Maven build lifecycle consists of
phases. One of these phases is the so-called phase
after which Byte Buddy plugs in and changes the Java bytecode
according to your instructions. Hence, there’s no code
manipulation at runtime that could affect runtime performance.

I’ll start by adding the required dependencies for the Byte Buddy
library:

The following XML adds the Byte Buddy Maven plugin to the
build lifecycle:

The Byte Buddy Maven plugin uses a custom class called
 that implements the

 interface, for example:

compilecompile

<dependency><dependency>
 <groupId>net.bytebuddy</groupId> <groupId>net.bytebuddy</groupId>
 <artifactId>byte-buddy</artifactId> <artifactId>byte-buddy</artifactId>
 <version>1.10.14</version> <version>1.10.14</version>
</dependency></dependency>

<plugin><plugin>
 <groupId>net.bytebuddy</groupId> <groupId>net.bytebuddy</groupId>
 <artifactId>byte-buddy-maven-plugin</arti <artifactId>byte-buddy-maven-plugin</arti
 <version>1.10.14</version> <version>1.10.14</version>
 <executions> <executions>
 <execution> <execution>
 <goals> <goals>
 <goal>transform</goal> <goal>transform</goal>
 </goals> </goals>
 </execution> </execution>
 </executions> </executions>
 <configuration> <configuration>
 <transformations> <transformations>
 <transformation> <transformation>
 <plugin> <plugin>
 record.test.RecordValidat record.test.RecordValidat
 </plugin> </plugin>
 </transformation> </transformation>
 </transformations> </transformations>
 </configuration> </configuration>
</plugin></plugin>

RecordValidationPluginRecordValidationPlugin

net.bytebuddy.build.Pluginnet.bytebuddy.build.Plugin

import java.io.IOException;import java.io.IOException;
import javax.validation.Constraint;import javax.validation.Constraint;

import static net.bytebuddy.matcher.ElementMaimport static net.bytebuddy.matcher.ElementMa
import static net.bytebuddy.matcher.ElementMaimport static net.bytebuddy.matcher.ElementMa

import net.bytebuddy.build.Plugin;import net.bytebuddy.build.Plugin;
import net.bytebuddy.description.method.Methoimport net.bytebuddy.description.method.Metho
import net.bytebuddy.description.type.TypeDesimport net.bytebuddy.description.type.TypeDes
import net.bytebuddy.dynamic.ClassFileLocatorimport net.bytebuddy.dynamic.ClassFileLocator
import net.bytebuddy.dynamic.DynamicType.Builimport net.bytebuddy.dynamic.DynamicType.Buil

The interface has three methods: , , and .
I don’t need to implement the last one.

The first method is used by Byte Buddy to find all the classes
whose code I want to change. I need only the record classes
that have a constructor with constrained parameters (having
bean validation annotations). This is where the new method

 comes into play.

The second method applies the changes to the bytecode
generated during the phase. It adds to those record
constructors that have constrained parameters a call to a
method in a custom class called

.

Also, note that I have to use a custom instance as
follows, because Java records are still a preview feature and,
therefore, type validation needs to be disabled:

import net.bytebuddy.dynamic.scaffold.TypeValimport net.bytebuddy.dynamic.scaffold.TypeVal
import net.bytebuddy.implementation.MethodDelimport net.bytebuddy.implementation.MethodDel
import net.bytebuddy.implementation.SuperMethimport net.bytebuddy.implementation.SuperMeth

public class RecordValidationPlugin implementpublic class RecordValidationPlugin implement

 @Override @Override
 public boolean matches(TypeDescription ta public boolean matches(TypeDescription ta
 return target.isRecord() && target.ge return target.isRecord() && target.ge
 .stream() .stream()
 .anyMatch(m -> m.isConstructo .anyMatch(m -> m.isConstructo
 } }

 @Override @Override
 public Builder<?> apply(Builder<?> builde public Builder<?> apply(Builder<?> builde
 try { try {
 builder = new ByteBuddy().with(Ty builder = new ByteBuddy().with(Ty
 } catch (ClassNotFoundException ex) { } catch (ClassNotFoundException ex) {
 throw new RuntimeException(ex); throw new RuntimeException(ex);
 } }
 return builder.constructor(this::hasC return builder.constructor(this::hasC
 .intercept(SuperMethodCall.IN .intercept(SuperMethodCall.IN
 } }

 private boolean hasConstrainedParameters(private boolean hasConstrainedParameters(
 return m.getParameters() return m.getParameters()
 .asDefined() .asDefined()
 .stream() .stream()
 .anyMatch(p -> !p.getDeclared .anyMatch(p -> !p.getDeclared
 .asTypeList() .asTypeList()
 .filter(hasAnnotation(annotat .filter(hasAnnotation(annotat
 .isEmpty()); .isEmpty());
 } }

 @Override @Override
 public void close() throws IOException { public void close() throws IOException {
 } }

}}

matchesmatches applyapply closeclose

Class.isRecord()Class.isRecord()

compilecompile

RecordValidationInterceptorRecordValidationInterceptor

BuilderBuilder

builder = new ByteBuddy().with(TypeValidationbuilder = new ByteBuddy().with(TypeValidation

And here’s the code for the
:

As a result of the code manipulation, the method
gets called from the record constructor and passes a

 object along with the according parameter values
to the bean validator instance.

You can give the method any name; Byte Buddy will identify it
with the help of its own annotations such as or

.

Now I’ll build the project using the previously declared
 with validation constraints added to the

components, for example:

RecordValidationInterceptorRecordValidationInterceptor

import java.lang.reflect.Constructor;import java.lang.reflect.Constructor;
import java.util.Set;import java.util.Set;
import java.util.stream.Collectors;import java.util.stream.Collectors;
import javax.validation.ConstraintViolation;import javax.validation.ConstraintViolation;
import javax.validation.ConstraintViolationEximport javax.validation.ConstraintViolationEx
import javax.validation.Validation;import javax.validation.Validation;
import javax.validation.Validator;import javax.validation.Validator;
import javax.validation.ValidatorFactory;import javax.validation.ValidatorFactory;
import net.bytebuddy.implementation.bind.annoimport net.bytebuddy.implementation.bind.anno
import net.bytebuddy.implementation.bind.annoimport net.bytebuddy.implementation.bind.anno

public class RecordValidationInterceptor {public class RecordValidationInterceptor {

 private static final Validator VALIDATOR; private static final Validator VALIDATOR;

 static { static {
 ValidatorFactory factory = Validation ValidatorFactory factory = Validation
 VALIDATOR = factory.getValidator(); VALIDATOR = factory.getValidator();
 } }

 public static <T> void validate(@Origin C public static <T> void validate(@Origin C
 Set<ConstraintViolation<T>> violation Set<ConstraintViolation<T>> violation
 .validateConstructorParameter .validateConstructorParameter
 if (!violations.isEmpty()) { if (!violations.isEmpty()) {
 String message = violations.strea String message = violations.strea
 .map(ConstraintViolation: .map(ConstraintViolation:
 .collect(Collectors.joini .collect(Collectors.joini
 throw new ConstraintViolationExce throw new ConstraintViolationExce
 } }
 } }

}}

validatevalidate

ConstructorConstructor

@Origin@Origin

@AllArguments@AllArguments

RectangleRecordRectangleRecord

import javax.validation.constraints.Positive;import javax.validation.constraints.Positive;

public record RectangleRecord(public record RectangleRecord(
 @Positive(message = "Length is ${validate @Positive(message = "Length is ${validate
 @Positive(message = "Width is ${validated @Positive(message = "Width is ${validated
) {}) {}

After the build has completed, you can look at the resulting
bytecode. To do so, execute the following command (allowing
you to disassemble a class file) from the command line:

In the following, I show only the constructor bytecode:

Notice the last instruction just before the statement.
That’s where the method

 is called.

Now I’ll test the code refactored by Byte Buddy:

Here’s the output:

As you can see, the creation of a instance
with invalid data has been avoided just by using regular bean
validation constraints on record components. The use of the
Byte Buddy plugin helps you to enforce Java record invariants
through the means of bean validation.

javap -c RectangleRecordjavap -c RectangleRecord

public record.test.RectangleRecord(double, dopublic record.test.RectangleRecord(double, do
 Code: Code:
 0: aload_0 0: aload_0
 1: dload_1 1: dload_1
 2: dload_3 2: dload_3
 3: aconst_null 3: aconst_null
 4: invokespecial #75 / 4: invokespecial #75 /
 7: getstatic #79 / 7: getstatic #79 /
 10: iconst_2 10: iconst_2
 11: anewarray #81 / 11: anewarray #81 /
 14: dup 14: dup
 15: iconst_0 15: iconst_0
 16: dload_1 16: dload_1
 17: invokestatic #87 / 17: invokestatic #87 /
 20: aastore 20: aastore
 21: dup 21: dup
 22: iconst_1 22: iconst_1
 23: dload_3 23: dload_3
 24: invokestatic #87 / 24: invokestatic #87 /
 27: aastore 27: aastore
 28: invokestatic #93 / 28: invokestatic #93 /
 31: return 31: return

returnreturn

RecordValidationInterceptor.validateRecordValidationInterceptor.validate

RectangleRecord rectangle = new RectangleRecoRectangleRecord rectangle = new RectangleReco

javax.validation.ConstraintViolationExceptionjavax.validation.ConstraintViolationException
Length is 0.0 but must be greater than zero.Length is 0.0 but must be greater than zero.
Width is -5.0 but must be greater than zero.Width is -5.0 but must be greater than zero.
 at csv.to.records.RecordValidationIntercept at csv.to.records.RecordValidationIntercept
 at record.test.RectangleRecord.<init>(Recta at record.test.RectangleRecord.<init>(Recta

RectangleRecordRectangleRecord

Frank Kiwy
Frank Kiwy is a senior software developer
and project leader who works for a
government IT center in Europe. His focus
is on Java SE, Java EE, and web
technologies. Kiwy is also interested in
software architecture and is committed to
continuous integration and delivery. He is
currently involved in implementing the
European Union's Common Agricultural
Policy, where he's in charge of several
projects. When programming, he values
well-designed software with clear and easy-
to-understand APIs.

Share this Page

Conclusion

Java records behave in many ways as normal Java classes, but
there are some differences to take into account. One is that
records don’t conform to JavaBeans conventions, because they
don’t have getters and setters, for instance. That’s why using
existing frameworks or libraries, and accessing instance
variables through getters and setters, won’t work with records.

Another difference is that the fields of a record can be set only
via its constructor and they are, therefore, de facto final, which
makes it easy to validate the record’s state by using either an
explicit constructor with the corresponding validation logic or
constraint annotations. In addition to the fact that records can be
declared with less ceremony than normal classes, convenient
state validation is one of their major advantages.

I’m looking forward to when records will become a regular Java
feature, hopefully in Java 16. In the meantime, I will keep
enjoying their second preview with Java 15.

Dig deeper

Records come to Java

Java language updates: Record classes

Record class documentation in Java 15

Data classes and sealed types for Java

JEP 384: Records (second preview) in Java 15

JEP 395: Records in Java 16


Facebook


Twitter


LinkedIn


Email

https://blogs.oracle.com/javamagazine/frank-kiwy
https://blogs.oracle.com/javamagazine/frank-kiwy
https://blogs.oracle.com/javamagazine/records-come-to-java
https://docs.oracle.com/en/java/javase/15/language/records.html
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/Record.html
https://cr.openjdk.java.net/~briangoetz/amber/datum.html
https://openjdk.java.net/jeps/384
https://openjdk.java.net/jeps/395

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

