
REACTIVE PROGRAMMING

Reactive streams programming
over WebSockets with Helidon
SE
With Helidon SE, client applications
can regulate asynchronous traffic by
signaling remote publishers how much
data to send at a time.
by Daniel Kec

September 11, 2020

Download a PDF of this article

Reactive streams programming is gaining popularity as a way to
handle asynchronous stream processing, and more and more
APIs are adopting a reactive approach. With a reactive
approach, everything has to be asynchronous and nonblocking
—and the implementation needs a mechanism for feedback to
regulate data flow, so subscribers won’t be drowned by faster
publishers.

This need for bidirectional asynchronous communication can
constrain the developer’s options for streaming data remotely
over the network. There are heavy-duty messaging systems that
can address this problem, of course, and they can tame large
amounts of asynchronous traffic flowing over the network.
However, those are usually big guns requiring considerable
heavy infrastructure. But what about simple use cases of server-
to-client reactive connections, which aren’t sending huge
amounts of data and where the client signals the server how
much data to send?

However, the best solution, I believe, is to employ the Reactive
Streams API. With this API and bidirectional communication in
the streams, an application can signal the publishers how much
stuff it can work with—in other words, it can apply the necessary

Reactive streams programming
over WebSockets with Helidon
SE

The WebSocket server
endpoint as a subscriber

The WebSocket client endpoint
as a publisher

Handling error signals with
Java

Full-stack reactive coding with
JavaScript

Handling error signals with
JavaScript

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/reactive-programming
https://app.compendium.com/api/post_attachments/f9535326-98b8-4167-8678-68caa20e4ea7/view
https://www.reactive-streams.org/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

backpressure to start and stop the stream as needed or desired.
See Figure 1.

Figure 1. The publish/subscribe model for the Reactive Streams API

There are existing solutions for connecting publishers to
subscribers via the network, such as RSocket, Reactive gRPC,
and ServiceTalk. Those are specification-compliant and ready to
use.

But if you are already working with a bidirectional network
protocol such as WebSocket with the Helidon SE microservices
library for Java, how hard would it be to simply use WebSocket
directly for connecting client subscribers to remote publishers?
That’s what I’ll explore in this article.

To be clear, implementing Reactive Streams for JVM API by
yourself can be tricky and is usually discouraged because this
seemingly simple API has a complicated specification. But as a
reward, you can have total control over the serialization of the
stream items and more versatility to recover from network
issues.

The WebSocket protocol is actually well suited for such a task,
and I’ll show you the benefits and drawbacks of using
WebSocket with Helidon SE. I’ll create a WebSocket server with

https://rsocket.io/
https://github.com/salesforce/reactive-grpc
https://github.com/apple/servicetalk
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://helidon.io/
https://github.com/reactive-streams/reactive-streams-jvm

Helidon SE for publishing to remote reactive subscribers, define
custom reactive signals, serialize them to JSON, and connect to
the server (via the stream) from Java and from JavaScript-based
subscribers.

And all of that is end-to-end reactive.

You can find all the examples for this article on GitHub.

Before continuing, be aware that Helidon supports two
programming models for writing microservices:

The WebSocket server endpoint as a subscriber

To connect reactive streams over a network, an application
needs an intermediate reactive subscriber on the server side
and a publisher on the client side. This may seem a little
confusing since the server side is actually the one doing the
publishing—but you should consider the WebSocket network
bridge as a processor in the middle of the stream. Thus, the
server side has to act as a subscriber for its upstream, while the
client side acts a publisher for its downstream. See Figure 2.

Helidon SE, which I am using here, is a microframework
that supports the reactive programming model.



Helidon MP is an Eclipse MicroProfile runtime that allows
the Jakarta EE community to run microservices in a
portable way.



https://github.com/danielkec
https://helidon.io/docs/latest/#/se/introduction/01_introduction
https://helidon.io/docs/latest/#/mp/introduction/01_introduction
https://projects.eclipse.org/proposals/eclipse-microprofile

Figure 2. The upstream and downstream of the WebSocket network bridge

The WebSocket API is always connecting client endpoints to the
server endpoint. The biggest difference between those two kinds
of endpoints is that the server endpoint is instantiated, by
default, by the WebSocket implementation for every client
connection. Thus, to use the server endpoint as a subscriber, I
must access the instance and subscribe it to the reactive stream
after the connection is made.

First, I will use a class to publishers for this
example application to supply a publisher every time the client is
connected. The factory will return a simple new stream of the 10
string items emitted at half-second intervals.

StreamFactoryStreamFactory

public class StreamFactory {public class StreamFactory {

 private final ScheduledExecutorService sch private final ScheduledExecutorService sch

 public Multi<String> createStream() { public Multi<String> createStream() {
 return Multi.interval(500, TimeUnit.MI return Multi.interval(500, TimeUnit.MI
 .limit(10) .limit(10)
 .map(aLong -> "Message number: .map(aLong -> "Message number:
 } }
}}

Now I’ll create a simple custom wrapper to differentiate signals
sent over WebSocket. For this example, let’s assume it’s a
stream of strings. To make things simple, I’m not propagating
subscribe or signals in this example. The impact
of that simplification is that the application must wait for the
WebSocket connection to be ready before sending a request
signal, so the abstraction is not really perfect.

For this example, it’s best to encode the WebSocket messages
with JSON-B. This will pay off later, when I connect to the server
from JavaScript.

onSubscribeonSubscribe

public class ReactiveSignal {public class ReactiveSignal {

 public Type type; public Type type;
 public long requested; public long requested;
 public String item; public String item;
 public Throwable error; public Throwable error;

 public enum Type { public enum Type {
 REQUEST, REQUEST,
 CANCEL, CANCEL,
 ON_NEXT, ON_NEXT,
 ON_ERROR, ON_ERROR,
 ON_COMPLETE ON_COMPLETE
 } }

public static ReactiveSignal request(long n) public static ReactiveSignal request(long n)
 ReactiveSignal signal = new ReactiveSignal ReactiveSignal signal = new ReactiveSignal
 signal.type = Type.REQUEST; signal.type = Type.REQUEST;
 signal.requested = n; signal.requested = n;
 return signal; return signal;
}}

public static ReactiveSignal cancel() {public static ReactiveSignal cancel() {
 ReactiveSignal signal = new ReactiveSignal ReactiveSignal signal = new ReactiveSignal
 signal.type = Type.CANCEL; signal.type = Type.CANCEL;
 return signal; return signal;
}}

public static ReactiveSignal next(String itempublic static ReactiveSignal next(String item
 ReactiveSignal signal = new ReactiveSignal ReactiveSignal signal = new ReactiveSignal
 signal.type = Type.ON_NEXT; signal.type = Type.ON_NEXT;
 signal.item = item; signal.item = item;
 return signal; return signal;
}}

public static ReactiveSignal error(Throwable public static ReactiveSignal error(Throwable
 ReactiveSignal signal = new ReactiveSignal ReactiveSignal signal = new ReactiveSignal
 signal.type = Type.ON_ERROR; signal.type = Type.ON_ERROR;
 signal.error = t; signal.error = t;
 return signal; return signal;
}}

public static ReactiveSignal complete() {public static ReactiveSignal complete() {
 ReactiveSignal signal = new ReactiveSignal ReactiveSignal signal = new ReactiveSignal
 signal.type = Type.ON_COMPLETE; signal.type = Type.ON_COMPLETE;
 return signal; return signal;
}}

}}

Next I will prepare a WebSocket endpoint, which also will be a
, which means it can directly subscribe to

the publisher created by . In this code, I’ll
assume the subscription needs to be realized before the
endpoint can intercept a WebSocket message.

public class ReactiveSignalEncoderDecoderpublic class ReactiveSignalEncoderDecoder
 implements Encoder.TextStream<Reactive implements Encoder.TextStream<Reactive

 private static final Jsonb jsonb = JsonbBui private static final Jsonb jsonb = JsonbBui

 @Override @Override
 public ReactiveSignal decode(final Reader public ReactiveSignal decode(final Reader
 return jsonb.fromJson(reader, Reactive return jsonb.fromJson(reader, Reactive
 } }

 @Override @Override
 public void encode(final ReactiveSignal ob public void encode(final ReactiveSignal ob
 writer.write(jsonb.toJson(object)); writer.write(jsonb.toJson(object));
 } }

 @Override @Override
 public void init(final EndpointConfig conf public void init(final EndpointConfig conf
 } }

 @Override @Override
 public void destroy() { public void destroy() {
 } }
}}

Flow.SubscriberFlow.Subscriber

StreamFactoryStreamFactory

public class WebSocketServerEndpoint extends public class WebSocketServerEndpoint extends

 private static final Logger LOGGER = Logge private static final Logger LOGGER = Logge

 private Session session; private Session session;
 private Flow.Subscription subscription; private Flow.Subscription subscription;

 @Override @Override
 public void onOpen(Session session, Endpoi public void onOpen(Session session, Endpoi
 this.session = session; this.session = session;
 System.out.println("Session " + sessio System.out.println("Session " + sessio

 session.addMessageHandler(new MessageH session.addMessageHandler(new MessageH
 @Override @Override
 public void onMessage(ReactiveSign public void onMessage(ReactiveSign
 System.out.println("Message " System.out.println("Message "
 switch (signal.type) { switch (signal.type) {
 case REQUEST: case REQUEST:
 subscription.request(s subscription.request(s
 break; break;
 case CANCEL: case CANCEL:
 subscription.cancel(); subscription.cancel();
 break; break;
 default: default:
 throw new IllegalState throw new IllegalState
 } }
 } }
 }); });
 } }

 @Override @Override

Notice that I am using WebSocket’s AsyncRemote to send
messages asynchronously. This is necessary because it’s
forbidden to block threads in reactive pipelines.

The only thing missing now is starting Helidon SE as a
WebSocket server. Once that’s done, every created
endpoint/subscriber is subscribed to the new publisher supplied
by the when a client connection is created.
That way, the upstream subscription is ready when the first
request signal from the downstream client arrives over
WebSocket.

 public void onError(final Session session, public void onError(final Session session,
 LOGGER.log(Level.SEVERE, thr, () -> "W LOGGER.log(Level.SEVERE, thr, () -> "W
 super.onError(session, thr); super.onError(session, thr);
 } }

 @Override @Override
 public void onClose(final Session session, public void onClose(final Session session,
 super.onClose(session, closeReason); super.onClose(session, closeReason);
 subscription.cancel(); subscription.cancel();
 } }

 @Override @Override
 public void onSubscribe(final Flow.Subscri public void onSubscribe(final Flow.Subscri
 this.subscription = subscription; this.subscription = subscription;
 } }

 @Override @Override
 public void onNext(final String item) { public void onNext(final String item) {
 sendSignal(ReactiveSignal.next(item)); sendSignal(ReactiveSignal.next(item));
 } }

 @Override @Override
 public void onError(final Throwable throwa public void onError(final Throwable throwa
 sendSignal(ReactiveSignal.error(throwa sendSignal(ReactiveSignal.error(throwa
 try { try {
 session.close(new CloseReason(Clos session.close(new CloseReason(Clos
 } catch (IOException e) { } catch (IOException e) {
 LOGGER.log(Level.SEVERE, e, () -> LOGGER.log(Level.SEVERE, e, () ->
 } }
 } }

 @Override @Override
 public void onComplete() { public void onComplete() {
 sendSignal(ReactiveSignal.complete()); sendSignal(ReactiveSignal.complete());
 try { try {
 session.close(new CloseReason(Clos session.close(new CloseReason(Clos
 } catch (IOException e) { } catch (IOException e) {
 LOGGER.log(Level.SEVERE, e, () -> LOGGER.log(Level.SEVERE, e, () ->
 } }
 } }

 private void sendSignal(ReactiveSignal sig private void sendSignal(ReactiveSignal sig
 session.getAsyncRemote().sendObject(si session.getAsyncRemote().sendObject(si
 } }
}}

StreamFactoryStreamFactory

StreamFactory streamFactory = new StreamFactoStreamFactory streamFactory = new StreamFacto

TyrusSupport tyrusSupport = TyrusSupport.builTyrusSupport tyrusSupport = TyrusSupport.buil
 .register(.register(

https://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html

That’s it for the server side!

The WebSocket client endpoint as a publisher

The next step is to use for the client side, so
the application has something to subscribe to. There are many
specification rules for the publisher to comply with, but the most
pressing issues are to signal subscriber methods serially (rule
1.3 of using the Reactive Streams spec for the JVM) and to not
block signals from downstream (rules 3.4 and 3.5). I will
leverage Helidon SE’s SequentialSubscriber class as a wrapper
for the actual subscriber, to defend it from wildly asynchronous
signals coming over a WebSocket. To ensure the request/cancel
signals are nonblocking and nonobstructing, I will simply use
WebSocket’s AsyncRemote to send the signals upstream, as
was done on the server side.

 ServerEndpointConfig.Builder.c ServerEndpointConfig.Builder.c
 WebSocketServerEndpoin WebSocketServerEndpoin
 .encoders(List.of(Reac .encoders(List.of(Reac
 .decoders(List.of(Reac .decoders(List.of(Reac
 .configurator(new Serv .configurator(new Serv
 @Override @Override
 public <T> T getEn public <T> T getEn
 throws Ins throws Ins
 T endpointInst T endpointInst
 if (endpointIn if (endpointIn
 WebSocketS WebSocketS
 (W (W
 //Endpoint //Endpoint
 streamFact streamFact
 } }
 return endpoin return endpoin
 } }
 }) })
 .build()) .build())
 .build(); .build();

Routing routing = Routing.builder()Routing routing = Routing.builder()
 .register("/ws", tyrusSupport) .register("/ws", tyrusSupport)
 .build(); .build();

WebServer.builder(routing)WebServer.builder(routing)
 .build() .build()
 .start(); .start();

Flow.PublisherFlow.Publisher

public class WebSocketClientEndpoint extends public class WebSocketClientEndpoint extends

 private static final Logger LOGGER = Logge private static final Logger LOGGER = Logge

 private Session session; private Session session;
 private Flow.Subscriber<? super String> su private Flow.Subscriber<? super String> su

 @Override @Override
 public void onOpen(final Session session, public void onOpen(final Session session,
 this.session = session; this.session = session;
 session.addMessageHandler(new MessageH session.addMessageHandler(new MessageH
 @Override @Override
 public void onMessage(ReactiveSign public void onMessage(ReactiveSign
 switch (signal.type) { switch (signal.type) {

https://github.com/reactive-streams/reactive-streams-jvm#1.3
https://github.com/reactive-streams/reactive-streams-jvm#3.4
https://github.com/reactive-streams/reactive-streams-jvm#3.5
https://helidon.io/docs/v2/apidocs/io.helidon.common.reactive/io/helidon/common/reactive/SequentialSubscriber.html

Now I just have to connect and request something, reusing the
same encoder for serializing messages. This time the test
application is creating only one connection, so I can instantiate
the client endpoint myself.

 case ON_NEXT: case ON_NEXT:
 subscriber.onNext(sign subscriber.onNext(sign
 break; break;
 case ON_ERROR: case ON_ERROR:
 subscriber.onError(sig subscriber.onError(sig
 break; break;
 case ON_COMPLETE: case ON_COMPLETE:
 subscriber.onComplete(subscriber.onComplete(
 break; break;
 default: default:
 subscriber.onError(new subscriber.onError(new
 } }
 } }
 }); });
 } }

 @Override @Override
 public void onError(final Session session, public void onError(final Session session,
 Optional.ofNullable(subscriber).ifPres Optional.ofNullable(subscriber).ifPres
 LOGGER.log(Level.SEVERE, thr, () -> "C LOGGER.log(Level.SEVERE, thr, () -> "C
 super.onError(session, thr); super.onError(session, thr);
 } }

 @Override @Override
 public void onClose(final Session session, public void onClose(final Session session,
 subscriber.onComplete(); subscriber.onComplete();
 super.onClose(session, closeReason); super.onClose(session, closeReason);
 } }

 @Override @Override
 public void subscribe(final Flow.Subscribe public void subscribe(final Flow.Subscribe
 Objects.requireNonNull(subscriber, "su Objects.requireNonNull(subscriber, "su
 // Notice usage of Helidon's Sequentia // Notice usage of Helidon's Sequentia
 // to get around difficulties with spe // to get around difficulties with spe
 this.subscriber = SequentialSubscriber this.subscriber = SequentialSubscriber
 subscriber.onSubscribe(this); subscriber.onSubscribe(this);
 } }

 @Override @Override
 public void request(final long n) { public void request(final long n) {
 sendAsyncSignal(ReactiveSignal.request sendAsyncSignal(ReactiveSignal.request
 } }

 @Override @Override
 public void cancel() { public void cancel() {
 sendAsyncSignal(ReactiveSignal.cancel(sendAsyncSignal(ReactiveSignal.cancel(
 } }

 private void sendAsyncSignal(ReactiveSigna private void sendAsyncSignal(ReactiveSigna
 try { try {
 //reactive means no blocking //reactive means no blocking
 session.getAsyncRemote().sendObjec session.getAsyncRemote().sendObjec
 } catch (Exception e) { } catch (Exception e) {
 subscriber.onError(e); subscriber.onError(e);
 } }
 } }
}}

The output should look like this, with 10 items coming in half-
second intervals followed by the complete signal:

As you can see, I have subscribed to the WebSocket publisher
with , which requests and means
the subscriber is confident it is able to consume any number of
items. Luckily, the upstream sends only 10 items and then
finishes.

Handling error signals with Java

What if something goes wrong? Let’s find out. First, let’s make
sure the client code is logging error signals and reports a
problem.

public class Client {public class Client {

 private static final Logger LOGGER = Logge private static final Logger LOGGER = Logge

 public static void main(String[] args) public static void main(String[] args)
 throws URISyntaxException, Deploym throws URISyntaxException, Deploym

 ClientManager client = ClientManager.c ClientManager client = ClientManager.c
 WebSocketClientEndpoint endpoint = new WebSocketClientEndpoint endpoint = new

 Future<Session> sessionFuture = client Future<Session> sessionFuture = client
 ClientEndpointConfig.Builder ClientEndpointConfig.Builder
 .create() .create()
 .encoders(List.of(Reac .encoders(List.of(Reac
 .decoders(List.of(Reac .decoders(List.of(Reac
 .build(), .build(),
 new URI("ws://localhost:8080/w new URI("ws://localhost:8080/w

 //Wait for the connection //Wait for the connection
 sessionFuture.get(); sessionFuture.get();

 //Subscribe to the publisher and wait //Subscribe to the publisher and wait
 Multi.create(endpoint) Multi.create(endpoint)
 .onError(throwable -> LOGGER.l .onError(throwable -> LOGGER.l
 .onComplete(() -> LOGGER.log(L .onComplete(() -> LOGGER.log(L
 .forEach(s -> System.out.print .forEach(s -> System.out.print
 .await(); .await();
 } }
}}

Received item> Message number: 0
Received item> Message number: 1
Received item> Message number: 2
Received item> Message number: 3
Received item> Message number: 4
Received item> Message number: 5
Received item> Message number: 6
Received item> Message number: 7
Received item> Message number: 8
Received item> Message number: 9
Jul 30, 2020 5:34:22 PM io.helidon.fs.reactiv
INFO: Complete signal received!

forEachforEach Long.MAX_VALUELong.MAX_VALUE

And now, to introduce a fault, I’ll tell the to
produce an error signal as the fourth item.

Running the code shows the following results. I can thank the
JSON-B adapter for providing a stack trace:

That concludes the Java-to-Java solution with reactive streams.
How about getting a little polyglot?

Full-stack reactive coding with JavaScript

When there’s a reactive WebSocket endpoint on the back end,
why not try to connect it to the reactive pipeline on the front end?

Let’s connect the application to a Reactive Extensions for
JavaScript (RxJS) stream. To stay end-to-end reactive, I’ll use
reactive operators to map custom signals to the RxJS stream.
The snippet below leverages the operator for
detecting the complete signal; when the type
arrives, the RxJS stream is completed.

For mapping the error signal, RxJS’s equivalent,
called , is the most suitable. I’ll use it for mapping any
items of type to stream errors and flatten errors into
the main stream. In case the error is , I’ll just unwrap
the item with flattening using .

Multi.create(endpoint)Multi.create(endpoint)
 .onError(throwable -> LOGGER.log(Level .onError(throwable -> LOGGER.log(Level
 .onComplete(() -> LOGGER.log(Level.INF .onComplete(() -> LOGGER.log(Level.INF
 .forEach(s -> System.out.println("Rece .forEach(s -> System.out.println("Rece
 .await(); .await();

StreamFactoryStreamFactory

public class StreamFactory {public class StreamFactory {

 public Multi<String> createStream() { public Multi<String> createStream() {
 return Multi.concat(Multi.just(1, 2, 3 return Multi.concat(Multi.just(1, 2, 3
 .map(aLong -> "Message number: .map(aLong -> "Message number:
 } }
}}

Received item> Message number: 1
Received item> Message number: 2
Received item> Message number: 3
Jul 31, 2020 4:30:11 PM io.helidon.fs.reactiv
SEVERE: Error from upstream!
java.lang.Throwable: BOOM!
 at app//io.helidon.fs.reactive.StreamFactor
 at app//io.helidon.fs.reactive.Server$1.get
 at app//org.glassfish.tyrus.core.TyrusEndpo

takeWhiletakeWhile

ON_COMPLETEON_COMPLETE

flatMapflatMap

mergeMapmergeMap

ON_ERRORON_ERROR

ON_NEXTON_NEXT

of(msg.item)of(msg.item)

const { Observable, of, from, throwError} = rconst { Observable, of, from, throwError} = r
const { map, takeWhile, mergeMap } = rxjs.opeconst { map, takeWhile, mergeMap } = rxjs.ope

When I connect this up, nothing happens. That’s because the
back end expects requests for a number of items, since it is
backpressure-aware. So, I’ll add a button to send a custom
request signal:

You can use the entire working example, which is available from
GitHub, to try to request any number of items and see the results
visually. Since the stream is initialized for every new connection,
after you deplete your 10 items and the stream is completed,
simply reload the page to start again. Figure 3 shows the user
interface.

Figure 3. The user interface for the JavaScript front end

Handling error signals with JavaScript

const { WebSocketSubject } = rxjs.webSocket;const { WebSocketSubject } = rxjs.webSocket;

const subject = new WebSocketSubject('ws://12const subject = new WebSocketSubject('ws://12

// Now I have to map the custom signals to Rx// Now I have to map the custom signals to Rx
subject.pipe(subject.pipe(
 // Map the custom ON_COMPLETE to RxJS comp // Map the custom ON_COMPLETE to RxJS comp
 takeWhile(msg => msg.type !== 'ON_COMPLETE takeWhile(msg => msg.type !== 'ON_COMPLETE
 // Map the custom ON_ERROR to RxJS error s // Map the custom ON_ERROR to RxJS error s
 mergeMap(msg => msg.type === 'ON_ERROR' ? mergeMap(msg => msg.type === 'ON_ERROR' ?
))
.subscribe(.subscribe(
 // invoked for every item // invoked for every item
 msg => onNext(msg), msg => onNext(msg),
 // invoked when error signal is intercepte // invoked when error signal is intercepte
 err => console.log(JSON.stringify(err, nul err => console.log(JSON.stringify(err, nul
 // invoked when complete signal is interce // invoked when complete signal is interce
 () => console.log('complete') () => console.log('complete')
););

const input = $("#input");const input = $("#input");
const submit = $("#submit");const submit = $("#submit");

submit.on("click", onSubmit);submit.on("click", onSubmit);

function onSubmit() {function onSubmit() {
 subject.next({"requested":input.val(),"typ subject.next({"requested":input.val(),"typ
}}

https://github.com/danielkec/fullstack-reactive-helidon

Let’s change again to produce an error signal
as the fourth item:

The custom error signal gets encoded to JSON. Figure 4 shows
the front end where it gets printed to the console:

Figure 4. Reactive stream error handling with JavaScript and JSON-B

As you can see, the application has a whole exception with a
Java stack trace, thanks to the fact that JSON-B is used for
encoding the custom signals.

Conclusion

WebSockets are powerful enough to support reactive streams
communications. That’s good for relatively small or constrained
application use cases. For streams that are expected to be long
and that might have millions of items flowing through them,
heavier tooling is required.

If you are interested in the topic, I can recommend MicroProfile
Reactive Messaging, which is available in Helidon MP. You can
also see the non-CDI API, which has been in Helidon SE since
version 2.0.0.

Dig deeper

StreamFactoryStreamFactory

public class StreamFactory {public class StreamFactory {

 public Multi<String> createStream() { public Multi<String> createStream() {
 return Multi.concat(Multi.just(1, 2, 3 return Multi.concat(Multi.just(1, 2, 3
 .map(aLong -> "Message number: .map(aLong -> "Message number:
 } }
}}

“Helidon Takes Flight"

“Microservices From Dev To Deploy, Part 1: Getting
Started With Helidon”



Project Helidon

https://download.eclipse.org/microprofile/microprofile-reactive-messaging-1.0/microprofile-reactive-messaging-spec.html
https://helidon.io/docs/latest/#/mp/reactivemessaging/01_introduction
https://medium.com/helidon/helidon-takes-flight-fb7e9e390e9c
https://blogs.oracle.com/developers/microservices-from-dev-to-deploy-part-1-getting-started-with-helidon
https://helidon.io/#/

Daniel Kec
Daniel Kec is a Java developer working for
Oracle in Prague, where he focuses on the
Helidon Project.

Share this Page

Overview of reactive programming

“Reactive Programming with JAX-RS”

“Reactive Programming with JDK 9 Flow API”

“Going Reactive with Eclipse Vert.x and RxJava”

The WebSocket API

Helidon Full Stack Reactive on GitHub


Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/daniel-kec
https://blogs.oracle.com/javamagazine/daniel-kec
https://twitter.com/danielkec
https://twitter.com/helidon_project
https://www.oracle.com/a/ocom/docs/corporate/java-magazine-jan-feb-2018.pdf
https://blogs.oracle.com/javamagazine/reactive-programming-with-jax-rs
https://community.oracle.com/docs/DOC-1006738
https://blogs.oracle.com/javamagazine/going-reactive-with-eclipse-vertx-and-rxjava
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://github.com/danielkec/fullstack-reactive-helidon
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

