
CODING

JPAstreamer: Expressing
Hibernate/JPA queries with
Java streams
Mixing Hibernate/JPA and Java for
database actions is neither completely
type-safe nor intuitive. The
JPAstreamer library offers another
solution.

by Per Minborg

January 29, 2021

What if you could keep Hibernate/JPA and at the same time stick
to Java and the Java Stream API?

Like many Java developers, I like to stick to a single language.
Every time I come across a database project and need to switch
from Java to Hibernate Query Language (HQL) or Java
Persistence Query Language (JPQL), it is a tedious process
because the syntax is wordy and partly unintuitive. Nevertheless,
I do appreciate that the Hibernate Java Persistence API (JPA)
abstracts away other inconveniences for me.

Now, you might think that it’s already possible to obtain streams
in the later versions of JPA, and this is perfectly true. However,
those streams fall short of enabling the use of streams to
express actual database queries. This feature merely relies on a
wrapped stream from previous HQL or JPQL queries or users
performing complete table scans. To add insult to injury, these
stream implementations are often flawed and perform poorly.

To solve these problems, Speedment developed the open
source library called JPAstreamer. This article shows how to
express JPA, Hibernate, and Spring queries using standard Java
streams. All that is necessary is to add a single dependency, and
then the application is instantly ready to handle database Java
streams.

JPAstreamer: Expressing
Hibernate/JPA queries with
Java streams

Advantages

JPAstreamer in a nutshell

JPAstreamer under the hood

Getting started with
JPAstreamer

Using JPAstreamer with Spring

Performance considerations

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/coding-2
https://speedment.com/
https://jpastreamer.org/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

Advantages

The Java Stream API is efficient and terse, and yet it’s intuitive
to express application logic with Java streams. JPAstreamer
gives you all those advantages for database applications.

To illustrate code efficiency, Listing 1 shows three examples of
code. The first uses a JPA CriteriaBuilder, the second uses
Spring Data JPA, and the third uses JPAstreamer code. The
code snippets offer pagination of a table containing users
(represented below by the class , which is a standard JPA
entity).

Listing 1. The same functionality in JPA CriteriaBuilder, Spring
Data JPA, and JPAstreamer

JPA CriteriaBuilder:

Spring Data JPA:

JPAstreamer:

UserUser

void printPage(EntityManager entityManager, ivoid printPage(EntityManager entityManager, i

 final CriteriaBuilder criteriaBuilder = e final CriteriaBuilder criteriaBuilder = e
 final CriteriaQuery<User> criteriaQuery = final CriteriaQuery<User> criteriaQuery =

 final Root<User> root = criteriaQuery.fro final Root<User> root = criteriaQuery.fro
 criteriaQuery.select(root); criteriaQuery.select(root);

 final TypedQuery<User> typedQuery = entit final TypedQuery<User> typedQuery = entit
 .setFirstResult((page - 1) * pageSize .setFirstResult((page - 1) * pageSize
 .setMaxResults(pageSize); .setMaxResults(pageSize);

 typedQuery.getResultList() typedQuery.getResultList()
 .forEach(System.out::println); .forEach(System.out::println);

}}

interface UserRepository extends JpaRepositorinterface UserRepository extends JpaRepositor
 @Query("select user from User user") @Query("select user from User user")
 Page<User> findAllPaged(Pageable pageable Page<User> findAllPaged(Pageable pageable
}}

......

@Autowired@Autowired
private UserRepository userRepository;private UserRepository userRepository;

void printPage(int page, int pageSize) {void printPage(int page, int pageSize) {

 userRepository userRepository
 .findAllPaged(PageRequest.of((page - 1 .findAllPaged(PageRequest.of((page - 1
 .forEach(System.out::println); .forEach(System.out::println);
}}

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/stream/package-summary.html

The declarative style offered by the Stream API gives shorter
code with improved readability and code metrics. Perhaps more
importantly, JPAstreamer provides complete type-safety for all
queries, which makes it possible to detect errors early, improve
code quality, and save time.

JPAstreamer in a nutshell

Here’s an example of a stream that operates on entities from the
same table (with attributes including a first and last name):

This will print the first 10 users where the first name starts with
the letter “A” sorted in reverse order based on their last names.
Omitting the details (to be covered shortly), this demonstrates
how the desired result is easily described as a pipeline of stream
operators.

On the surface, it may look as if the presented stream would
require every row in the user table to be materialized into the
JVM. However, this is not the case because the stream is
actually optimized and rendered by JPAstreamer to JPQL
queries similar to this:

Thus, the stream queries are as performant as alternative
approaches such as JPQL or CriteriaBuilder, but they have the
improvement that JPAstreamer constitutes a streamlined and
type-safe approach to expressing queries.

void printPage(int page, int pageSize) {void printPage(int page, int pageSize) {

 jpaStreamer.stream(User.class) jpaStreamer.stream(User.class)
 .skip((page - 1) * pageSize) .skip((page - 1) * pageSize)
 .limit(pageSize) .limit(pageSize)
 .forEach(System.out::println); .forEach(System.out::println);

}}

UserUser

jpaStreamer.stream(User.class)jpaStreamer.stream(User.class)
 .filter(User$.firstName.startsWith("A")) .filter(User$.firstName.startsWith("A"))
 .sorted(User$.lastName.reversed()) .sorted(User$.lastName.reversed())
 .limit(10) .limit(10)
 .forEach(System.out::println); .forEach(System.out::println);

selectselect
 User User
fromfrom
 User as User User as User
wherewhere
 User.firstName like :param0 User.firstName like :param0
order byorder by
 User.lastName desc User.lastName desc

JPAstreamer under the hood

Similar to well-known Java libraries such as the JPA static
metamodel and Project Lombok, JPAstreamer uses an
annotation processor to form a metamodel at compile time. It
inspects any classes marked with the standard JPA annotation

 (see Listing 2), and for every entity , a
corresponding is generated. The generated
classes represent entity attributes as fields that can be used to
form predicates.

In the case above, classes can, for example, take the form
 that can be

interpreted by JPAstreamer’s query optimizer.

Listing 2. JPAstreamer generates fields based on existing JPA
entities.

JPAstreamer does not alter or disturb the existing codebase; it
simply extends the API to handle Java stream queries from this
point forward. Furthermore, the metamodel is, by default, placed
in the subfolder located in the target
folder and neither needs to be tested nor checked in with the
other source code.

Getting started with JPAstreamer

Let’s walk through the easy process of setting up JPAstreamer
with your database application. To follow along, your application
must use Java 8 (or later) as well as Hibernate or another JPA
provider that is responsible for object persistence, such as
EclipseLink, OpenJPA, or TopLink.

JPAstreamer is licensed under LGPL; thus it is easy to use in
existing Hibernate projects, because Hibernate uses the same
license.

@Entity@Entity Foo.classFoo.class

Foo$.classFoo$.class

UserUser

User$.firstName.startsWith("A")User$.firstName.startsWith("A")

@Entity@Entity
@Table(name = "user", schema = "db-name")@Table(name = "user", schema = "db-name")
public class User implements Serializable {public class User implements Serializable {

 @Id @Id
 @GeneratedValue(strategy = GenerationType.I @GeneratedValue(strategy = GenerationType.I
 @Column(name = "user_id", nullable = false, @Column(name = "user_id", nullable = false,
 private Integer userId; private Integer userId;

 @Column(name = "first_name", columnDefiniti @Column(name = "first_name", columnDefiniti
private String firstName;private String firstName;

@Column(name = "last_name", columnDefinition @Column(name = "last_name", columnDefinition
private String lastName;private String lastName;

// … shortened for brevity// … shortened for brevity

generated sourcesgenerated sources

https://projectlombok.org/

Because only snippets of the code are shown here, you should
view and run all the examples by downloading the source code
from GitHub.

Installation. JPAstreamer is available in the Maven Central
Repository, which boils down the installation processes to the
simple addition of a single dependency in an existing Maven or
Gradle build.

If you are using Maven, add the following lines to your existing
Maven project:

For Gradle, add the following lines to your existing project:

<dependencies><dependencies>
 <dependency> <dependency>
 <groupId>com.speedment.jpastreamer</g <groupId>com.speedment.jpastreamer</g
 <artifactId>jpastreamer-core</artifac <artifactId>jpastreamer-core</artifac
 <version>${jpa-streamer-version}</ver <version>${jpa-streamer-version}</ver
 </dependency> </dependency>
</dependencies></dependencies>

<plugins><plugins>
 <!-- Needed by some IDEs to mark the gene <!-- Needed by some IDEs to mark the gene
 <plugin> <plugin>
 <groupId>org.codehaus.mojo</groupId> <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin <artifactId>build-helper-maven-plugin
 <version>3.2.0</version> <version>3.2.0</version>
 <executions> <executions>
 <execution> <execution>
 <phase>generate-sources</phas <phase>generate-sources</phas
 <goals> <goals>
 <goal>add-source</goal> <goal>add-source</goal>
 </goals> </goals>
 <configuration> <configuration>
 <sources> <sources>
 <source> <source>
${project.build.directory}/generated-sources/${project.build.directory}/generated-sources/
 </source> </source>
 </sources> </sources>
 </configuration> </configuration>
 </execution> </execution>
 </executions> </executions>
 </plugin> </plugin>
</plugins></plugins>

repositories {repositories {
 mavenCentral() mavenCentral()
}}

dependencies {dependencies {
 compile "com.speedment.jpastreamer:jpastr compile "com.speedment.jpastreamer:jpastr
 annotationProcessor "com.speedment.jpastr annotationProcessor "com.speedment.jpastr
}}

/* Needed by some IDEs to mark the generated /* Needed by some IDEs to mark the generated
sourceSets {sourceSets {
 main { main {
 java { java {
 srcDir 'src/main/java' srcDir 'src/main/java'
 srcDir 'target/generated-sources/ srcDir 'target/generated-sources/

https://github.com/speedment/jpa-streamer-demo
https://mvnrepository.com/artifact/com.speedment.jpastreamer

After the build file is altered, JPAstreamer requires a rebuild of
the application to allow the generation of its metamodel. The
boilerplates are generated as bytecode from the existing
database configuration without user interaction. Interestingly, the
Java source code for the bytecode is also available, which is
useful for debugging your project.

At this point, the API is now extended, and you can start writing
business logic.

Composing queries. With the setup done, I will move on to
show how to start composing stream queries. The first step is to
obtain an instance of JPAstreamer, for example:

The string is to be replaced with the name of the
persistence unit you wish to query. Look it up in your JPA
configuration file (often named) under the
tag .

Spring users have the option to use dependency injection with
the annotation, for example:

The JPAstreamer instance provides access to the method
, which accepts a class representing an entity you

wish to stream. For example, as I have previously shown, the
user table (containing entities) can be streamed by simply
typing the following:

This returns a stream of all the user rows of type
. With a stream source at hand, you are free to

add any Java stream operations to form a pipeline through which
the data will flow (data flowing is a conceptual image rather than
an actual description of how the code executes), for example:

This stream collects in a list the names of users who reached the
age of 20. As a reminder, refers to the generated entity
that is part of JPAstreamer’s metamodel. This entity is used to
form predicates and comparators for operations such as

 } }
 } }
}}

JPAStreamer jpaStreamer = JPAStreamer.of("db-JPAStreamer jpaStreamer = JPAStreamer.of("db-

name");name");

db-namedb-name

persistence.xmlpersistence.xml

<persistence-unit><persistence-unit>

@Autowired@Autowired

@Autowired@Autowired

Private final JPAStreamer jpaStreamer;Private final JPAStreamer jpaStreamer;

.stream().stream()

UserUser

jpaStreamer.stream(User.class)jpaStreamer.stream(User.class)

Stream<User>Stream<User>

List<String> users = jpaStreamer.stream(User.List<String> users = jpaStreamer.stream(User.
 .filter(User$.age.greaterOrEqual(20)) .filter(User$.age.greaterOrEqual(20))
 .map(u -> u.getFirstName() + " " + u.ge .map(u -> u.getFirstName() + " " + u.ge
 .collect(Collectors.toList()); .collect(Collectors.toList());

$User$User

 and , which are quickly composed
leveraging code completion in modern IDEs.

Here is another example that counts all users from Germany
named “Otto” using a combined predicate:

Appealingly, not a single entity will ever be pulled into the
JVM for the stream above. Instead, the entire stream pipeline
will be executed by the database in a single

 statement, after which the
actual count will be directly returned to Java.

Always use predicates. By the way, to allow JPAstreamer to
optimize a given stream, always use predicates derived from
fields instead of anonymous lambdas. In other words, do this:

Don’t do this:

Using JPAstreamer with Spring

To put the use of JPAstreamer in a broader context, I will show
how smoothly it integrates with Spring Boot, allowing very simple
creation of a REST API microservice. The demonstrated service
utilizes the open source database Sakila that is available for
download from Oracle or for use via Docker. This database
represents a traditional movie rental store; hence, unsurprisingly
it contains entities such as films, actors, and languages. A
suitable objective is to create an endpoint that returns a list of
films that are available for rent.

To achieve this using JPAstreamer and Spring, I first configured
a standard Spring application for use with the Sakila database.
Next, I added the JPAstreamer dependencies, and then I
composed the JPA entities to represent the required tables.
Because this service won’t expose all the available properties, I
also built a view model to represent only the relevant
information.

Because most of this is standard Hibernate, JPA, and Spring, I
will highlight only the key code pieces. You can view and run the
complete application on GitHub.

Maven configuration. For the Maven configuration, the POM
file needs to be set up as a normal Spring project and include
both the standard JPAstreamer dependency, as previously
shown, and the following Spring extension:

.filter().filter() .sort().sort()

long count = jpaStreamer.stream(User.class)long count = jpaStreamer.stream(User.class)
 .filter(User$.country.equal("Germany"). .filter(User$.country.equal("Germany").
 .count(); .count();

UserUser

select count(*) where ...select count(*) where ...

filter($User.age.greaterOrEqual(20))filter($User.age.greaterOrEqual(20))

filter(u -> u.getAge() >= 20)filter(u -> u.getAge() >= 20)

https://dev.mysql.com/doc/sakila/en/
https://hub.docker.com/r/1maa/sakila
https://github.com/speedment/jpa-streamer-demo

JPA entities and view model. To keep the microservice fairly
simple, I added only a small number of entities to work with,
namely film, actor, and language, which are all related. I also
created a view model exposing the title, description, language,
and starring actors of a film. Because this part of the code
contains no JPAstreamer-specific parts, they are excluded from
this article.

Creating the REST API. With this foundation in place, let’s have
a look at the REST controller. I will show the final implementation
and break it down afterwards:

The first lines inject a JPAstreamer instance that can be used to
fetch data objects. Next, there’s a GET mapping that will list the
entries of the film table. Whenever a user executes a GET
request on , the method will be called. This
method handles two optional arguments, and ,
which you can use to specify the pagination rules. The response
is served using JPAstreamer’s Stream API to issue a database
query.

The expression uses the view
model I initially mentioned to simply map each entry to a
condensed format that strips away unwanted columns. This step
could optionally be removed to return each in its entirety.

<dependency><dependency>
<groupId>com.speedment.jpastreamer.integratio<groupId>com.speedment.jpastreamer.integratio
 <artifactId>spring-boot-jpastreamer-autoc <artifactId>spring-boot-jpastreamer-autoc
 <version>${jpa-streamer-version}</version <version>${jpa-streamer-version}</version
 </dependency> </dependency>

@RestController@RestController
public class FilmController {public class FilmController {

 private final JPAStreamer jpaStreamer; private final JPAStreamer jpaStreamer;

 @Autowired @Autowired
 public FilmController(JPAStreamer jpaStre public FilmController(JPAStreamer jpaStre
 this.jpaStreamer = jpaStreamer; this.jpaStreamer = jpaStreamer;
 } }

 @ResponseStatus(code = HttpStatus.OK) @ResponseStatus(code = HttpStatus.OK)
 @GetMapping(value = "/films", produces = @GetMapping(value = "/films", produces =
 public Stream<FilmViewModel> films(public Stream<FilmViewModel> films(
 @RequestParam(required = false, defau @RequestParam(required = false, defau
 @RequestParam(required = false, defau @RequestParam(required = false, defau
) {) {
 return jpaStreamer.stream(Film.class) return jpaStreamer.stream(Film.class)
 .skip(page * pageSize) .skip(page * pageSize)
 .limit(pageSize) .limit(pageSize)
 .map(FilmViewModel::from); .map(FilmViewModel::from);
 } }
}}

/films/films films()films()

pagepage pageSizepageSize

.map(FilmViewModel::from).map(FilmViewModel::from)

FilmFilm

FilmFilm

This demo application is configured to run on port 8080,
meaning the endpoint http://localhost:8080/films will produce the
following output with the first 10 films (showing only 1 film for
brevity):

Further, the endpoint http://localhost:8080/films?
page=9&pageSize=5 will produce an output with only five films
and showing the 10th page. Now wasn’t that easy?

Performance considerations

Generally, as database queries get more complex, and the
database grows or is under high load, you run into performance
issues that need to be mitigated. Below, I will show how
JPAstreamer can help you avoid the infamous “N+1 select issue”
that often arises when you initialize a lazy association between
two entities. Typically, this will result in a staggering number of
queries, which drastically decreases the application’s
performance.

With JPAstreamer, you can avoid this class of problem by
providing a stream configuration object, as shown below:

This ensures that the resulting query joins cities with users, thus
avoiding the N+1 select problem altogether. Any number of
columns can be joined to the original entity.

Conclusion

[[
 { {
 "title":"ACADEMY DINOSAUR", "title":"ACADEMY DINOSAUR",
 "description":"An Epic Drama of a Fem "description":"An Epic Drama of a Fem
 "language":"English", "language":"English",
 "actors":["actors":[
 "PENELOPE GUINESS", "PENELOPE GUINESS",
 "CHRISTIAN GABLE", "CHRISTIAN GABLE",
 "LUCILLE TRACY", "LUCILLE TRACY",
 "SANDRA PECK", "SANDRA PECK",
 "JOHNNY CAGE", "JOHNNY CAGE",
 "MENA TEMPLE", "MENA TEMPLE",
 "WARREN NOLTE", "WARREN NOLTE",
 "OPRAH KILMER", "OPRAH KILMER",
 "ROCK DUKAKIS", "ROCK DUKAKIS",
 "MARY KEITEL" "MARY KEITEL"
]]
 }, },
… 9 additional films ...… 9 additional films ...
]]

StreamConfiguration<User> configuration = StrStreamConfiguration<User> configuration = Str
 .joining(User$.city); .joining(User$.city);

 jpaStreamer.stream(configuration) jpaStreamer.stream(configuration)

https://vladmihalcea.com/n-plus-1-query-problem/

Per Minborg
Per Minborg (@PMinborg) is CTO for
Speedment Technologies and the lead
contributor to JPAstreamer. He is an Oracle
Groundbreaker Ambassador, an inventor, a
developer, an Oracle Code One alumnus,
and a co-author of the publication Modern
Java with more than 20 years of Java
coding experience. Minborg is a frequent
contributor to open source projects.

Share this Page

Hibernate and JPA are powerful when it comes to database
access, but Hibernate and JPA usage can easily lead to
complexity. I have shown how you can integrate the open source
library JPAstreamer with Hibernate (or any JPA provider) to
compose type-safe and expressive database queries as
standard Java streams. Doing this, you will be able to continue
using JPA while keeping your codebase clean and maintainable.

As a final note, I would like to emphasize that you can continue
to use old JPQL or CriteriaBuilder code in parallel with
JPAstreamer. You can elect to convert old code now, later, or
never.

Dig deeper

JPAstreamer homepage

GitHub repository

Example source code

Documentation

Java Persistence API


Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/per-minborg
https://blogs.oracle.com/javamagazine/per-minborg
https://twitter.com/pminborg
http://www.jpastreamer.org/
http://www.github.com/speedment/jpa-streamer
http://www.github.com/speedment/jpa-streamer-demo
https://speedment.github.io/jpa-streamer/jpa-streamer/0.1.7/introduction/introduction.html
https://www.oracle.com/java/technologies/persistence-jsp.html
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

