
December 2019

JVM INTERNALS

Understanding the JDK’s New
Superfast Garbage Collectors
ZGC, Shenandoah, and improvements to
G1 get developers closer than ever to
pauseless Java.
by Raoul-Gabriel Urma and Richard Warburton

November 21, 2019

Download a PDF of this article

Some of the most exciting developments that have occurred in the last
six months have been under the hood in the JDK’s garbage collectors
(GCs). This article covers a range of different improvements, many of
which first appeared in JDK 12 and continued in JDK 13. First, we’ll
describe Shenandoah, a low-latency GC that operates mostly
concurrently with the application. We will also cover recent improvements
to ZGC (a low-latency concurrent GC introduced in Java 11) that were
released as part of JDK 12. And we’ll explain in detail two improvements
to the Garbage First (G1) GC, which has been the default GC from Java
9 onwards.

Overview of GCs

One of Java’s greatest productivity benefits for developers compared to
older languages such as C and C++ is the use of garbage collection. As
a Java developer, you mostly don’t need to worry about leaking memory
if you don’t explicitly free memory locations, and you don’t need to worry
about crashing your application if you free memory before you’re done
using it. Garbage collection is a big productivity win, but time and time
again, developers have been concerned with its performance
implications. Will it slow your application down? Will it cause individual
pauses to the application that will cause a poor experience for your
users?

Many garbage collection algorithms have been tried and tested over the
years, iteratively improving their performance. There are two common
areas of performance for such algorithms. The first is garbage collection
throughput: How much of your application’s CPU time is spent performing
garbage collection work rather than running application code? The
second is the delay created—that is, the latency of individual pauses.

For many pausing GCs (for example, Parallel GC, which was the default
GC before Java 9), increasing the heap size of the application improves
throughput but makes worst-case pauses longer. For GCs with this
profile, larger heaps mean that your garbage collection cycles run less
frequently and, thus, amortize their collection work more effectively, but
the individual pause times take longer because there’s more work to do
in an individual cycle. Using the Parallel GC on a large heap can result in
significant pauses, because the time it takes to collect the old generation
of allocated objects scales with the size of the generation and, thus, the

Understanding the JDK’s New Superfast
Garbage Collectors

Overview of GCs

Shenandoah

ZGC with Concurrent Class Unloading

G1 Improvements

Prompt Return of Unused, Committed
Memory

Conclusion

Also in This Issue

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/december-2019-v2
https://blogs.oracle.com/javamagazine/jvm-internals
https://app.compendium.com/api/post_attachments/71b7b174-bca2-4816-9eaa-96b75f444b20/view
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://www.oracle.com/

heap. But if you’re running something such as a non-interactive batch
job, the Parallel GC can be an efficient collector.

Since Java 9, the G1 collector has been the default GC in OpenJDK and
Oracle JDK. G1’s overall approach to garbage collection is to slice up GC
pauses according to a user-supplied time target. This means that if you
want shorter pauses, set a lower target, and if you want less of the CPU
used by your GC and more used by your application, set a larger target.
Whereas Parallel GC was a throughput-oriented collector, G1 tries to be
a jack of all trades: It offers lesser throughput but better pause times.

However, G1 isn’t a master of pause times. As the amount of work to be
done during a garbage collection cycle increases, either due to a very
large heap or to rapidly allocating lots of objects, the time-slicing
approach starts to hit a wall. By analogy, chopping a big piece of food
into small pieces makes those pieces easier to digest, but if you’ve just
got too much food on your plate, it’s going to take you ages to eat dinner.
Garbage collection works the same way.

This is the problem space that JDK 12’s Shenandoah GC attacks: It’s a
latency specialist. It can consistently achieve low pause times, even on
large heaps. It might spend a bit more CPU time performing garbage
collection work than the Parallel GC, but the pause times are greatly
reduced. That’s great for low-latency systems in the finance, gambling, or
advertising industries or even for interactive websites where users can be
frustrated by long pauses.

In this article, we explain the latest versions of these GCs as well as the
recent updates to G1 and, we hope, help guide you to the balance of
features that works best for your applications.

Shenandoah

Shenandoah is a new GC that was released as part of JDK 12. In fact,
the Shenandoah development effort backports improvements to JDK 8u
and 11u releases as well, which is great if you haven’t had the
opportunity to upgrade to JDK 12.

Let’s look at who should think about switching over to it and why. We
won’t be going into too much detail about how Shenandoah works under
the hood, but if you’re interested in the technology, you should look at the
accompanying article and also at the Shenandoah page on the OpenJDK
wiki.

Shenandoah’s key advance over G1 is to do more of its garbage
collection cycle work concurrently with the application threads. G1 can
evacuate its heap regions, that is, move objects, only when the
application is paused, while Shenandoah can relocate objects
concurrently with the application. To achieve the concurrent relocation, it
uses what’s known as a Brooks pointer. This pointer is an additional field
that each object in the Shenandoah heap has and which points back to
the object itself.

Shenandoah does this because when it moves an object, it also needs to
fix up all the objects in the heap that have references to that object.
When Shenandoah moves an object to a new location, it leaves the old
Brooks pointer in place, forwarding references to the new location of the
object. When an object is referenced, the application follows the
forwarding pointer to the new location. Eventually the old object with the
forwarding pointer needs to be cleaned up, but by decoupling the cleanup
operation from the step of moving the object itself, Shenandoah can more
easily accomplish the concurrent relocation of objects.

To use Shenandoah in your application from Java 12 onwards, enable it
with the following options:

-XX:+UnlockExperimentalVMOptions -XX:+UseShenandoahG

https://blogs.oracle.com/javamagazine/the-new-garbage-collectors-in-openjdk
https://wiki.openjdk.java.net/display/shenandoah/Main

If you can’t yet make the jump to Java 12, but you are interested in trying
out Shenandoah, backports to Java 8 and Java 11 are available. It’s
worth noting that Shenandoah isn’t enabled in the JDK builds that Oracle
ships, but other OpenJDK distributors enable Shenandoah by default.
More details on Shenandoah can be found in JEP 189.

Shenandoah isn’t the only option when it comes to concurrent GCs. ZGC
is another GC that is shipped with OpenJDK (including with Oracle’s
builds), and it has been improved in JDK 12. So if you have an app that
suffers from garbage collection pause problems and you are thinking
about trying Shenandoah, you should also look at ZGC, which we
describe next.

ZGC with Concurrent Class Unloading

The primary goals of ZGC are low latency, scalability, and ease of use. To
achieve this, ZGC allows a Java application to continue running while it
performs all garbage collection operations except thread stack scanning.
It scales from a few hundred MB to TB-size Java heaps, while
consistently maintaining very low pause times—typically within 2 ms.

The implications of predictably low pause times could be profound for
both application developers and system architects. Developers will no
longer need to worry about designing elaborate ways to avoid garbage
collection pauses. And system architects will not require specialized GC
performance tuning expertise to achieve the dependably low pause times
that are very important for so many use cases. This makes ZGC a good
fit for applications that require large amounts of memory, such as with big
data. However, ZGC is also a good candidate for smaller heaps that
require predictable and extremely low pause times.

ZGC was added to JDK 11 as an experimental feature. In JDK 12, ZGC
added support for concurrent class unloading, allowing Java applications
to continue running during the unloading of unused classes instead of
pausing execution.

Performing concurrent class unloading is complicated and, therefore,
class unloading has traditionally been done in a stop-the-world pause.
Determining the set of classes that are no longer used requires
performing reference processing first. Then there’s the processing of
finalizers–which is how we refer to implementations of the

 method. As part of reference processing, the set
of objects reachable from finalizers must be traversed, because a
finalizer could transitively keep a class alive through an unbounded chain
of links. Unfortunately, visiting all objects reachable from finalizers could
take a very long time. In the worst-case scenario, the whole Java heap
could be reachable from a single finalizer. ZGC runs reference
processing concurrently with the Java application (since the introduction
of ZGC in JDK 11).

After reference processing has finished, ZGC knows which classes are
no longer needed. The next step is to clean all data structures containing
stale and invalid data as a result of these classes dying. Links from data
structures that are alive to data structures that have become invalid or
dead are cleared. The data structures that need to be walked for this
unlinking operation include several internal JVM data structures, such as
the code cache (containing all JIT-compiled code), class loader data
graph, string table, symbol table, profile data, and so forth. After unlinking
the dead data structures is finished, those dead data structures are
walked again to delete them, so that memory is finally reclaimed.

Until now, all JDK GCs have done all of this in a stop-the-world operation,
causing latency issues for Java applications. For a low-latency GC, this is
problematic. Therefore, ZGC now runs all of this concurrently with the
Java application and, hence, pays no latency penalty for supporting class
unloading. In fact, the mechanisms introduced to perform concurrent
class unloading improved latencies even further. The time spent inside of
stop-the-world pauses for garbage collection is now proportional only to

Object.finalize()Object.finalize()

https://openjdk.java.net/jeps/189
https://docs.oracle.com/javase/10/docs/api/java/lang/Object.html#finalize()

the number of threads in the application. The significant effect this
approach has on pause times is shown in Figure 1.

Figure 1. The pause times of ZGC compared with other GCs

ZGC is currently available as an experimental GC for the Linux/x86 64-bit
platform and, as of Java 13, on Linux/Aarch. You can enable it with the
following command-line options:

More information on ZGC can be found on the OpenJDK wiki.

G1 Improvements

Some organizations cannot change their runtime systems to use
experimental GCs. They will be happy to know that G1 has enjoyed
several improvements. The G1 collector time-slices its garbage collection
cycles into multiple different pauses.

Objects are initially considered to be part of the “young” generation after
they are allocated. As they stay alive over multiple garbage collection
cycles, they eventually “tenure” and are then considered “old.” Different
regions within G1 contain objects from only one generation and can thus
be referred to as young regions or old regions.

For G1 to meet the pause-time goals, it needs to be able to identify a
chunk of work that can be done within the pause time goal and finish that
work by the time the pause goal expires. G1 has a complicated set of
heuristics for identifying the right size of work, and these heuristics are
good at predicting the required work time, but they are not always
accurate. Complicating the picture still further is the fact that G1 can’t
collect only parts of young regions; it collects all the young regions in one
garbage collection pass.

In Java 12, this situation is improved by adding the ability to abort G1
collection pauses. G1 keeps track of how accurately its heuristics are
predicting the number of regions to collect and proceeds only with
abortable garbage collections if it needs to. It proceeds by splitting up the
collection set (the set of regions that will be garbage collected in a cycle)
into two groups: mandatory regions and optional regions.

Mandatory regions are always collected within a GC cycle. Optional
regions are collected as time allows, and the collection pass is aborted if
it runs out of time without collecting the optional regions. The mandatory
regions are all the young regions and potentially some old regions. Old-
generation regions are added to this set to respond to two criteria. Some
are added to ensure that the evacuation of objects can proceed and
some in order to use up the expected pause time.

-XX:+UnlockExperimentalVMOptions -XX:+UseZGC

https://wiki.openjdk.java.net/display/zgc

The heuristic to calculate how many regions to add proceeds by dividing
the number of regions in the collection set candidates by the value of

. If G1 predicts there will be time left to
collect more old-generation regions, then it also adds more regions to the
mandatory region set until it expects to use up 80% of the available
pause time.

The result of this work means that G1 is able to abort, or end, its mixed
GC cycles. This results in lower GC pause latency and a high probability
that G1 is able to achieve its pause-time target more frequently. This
improvement is detailed in JEP 344.

Prompt Return of Unused, Committed Memory

One of the most common criticisms leveled at Java is that it’s a memory
hog—well, not anymore! Sometimes, JVMs are allocated more memory
than they need through command-line options; and if no memory-related
command-line options are provided, the JVM may allocate more memory
than needed. Allocating RAM that goes unused wastes money, especially
in cloud environments where all resources are metered and costed
appropriately. But what can be done to solve this situation, and can Java
be improved in terms of resource consumption?

A common situation is that the workload that a JVM must handle changes
over time: Sometimes it needs more memory and sometimes less. In
practice, this is often irrelevant because JVMs tend to allocate a large
quantity of memory on startup and greedily hold onto it even when they
don’t need it. In an ideal world, unused memory could be returned from
the JVM back to the operating system so other applications or the
container would be able to use it. As of Java 12, this return of unused
memory is now possible.

G1 already has the capability to free unused memory, but it does so only
during full garbage collection passes. Full garbage collection passes are
often infrequent and an undesirable occurrence, because they can entail
a long stop-the-world application pause. In JDK 12, G1 gained the ability
to free unused memory during concurrent garbage collection passes.
This feature is especially useful for mostly empty heaps. When heaps are
mostly empty, it can take a while for a GC cycle to scoop up the memory
and return it to the operating system. To ensure that memory is promptly
returned to the operating system, as of Java 12, G1 will try to trigger
concurrent garbage collection cycles if a garbage collection cycle hasn’t
happened for the period specified on the command line by the

 argument. This concurrent garbage collection
cycle will then release memory to the operating system at the end of the
cycle.

To ensure that these periodic concurrent garbage collection passes don’t
add unnecessary CPU overhead, they are run only when the system is
partially idle. The measurement used to trigger whether the concurrent
cycle runs or not is the average one-minute system load value, which has
to be below the value specified by

.

More details can be found in JEP 346.

Conclusion

This article presented several ways in which you can stop worrying about
GC-induced pause times in your applications. While G1 continues to
improve, it’s good to know that as heap sizes increase and the
acceptability of pause times is reduced, new GCs such as Shenandoah
and ZGC offer a scalable, low-pause future.

Also in This Issue

Epsilon: The JDK’s Do-Nothing Garbage Collector
Understanding Garbage Collectors
Testing HTML and JSF-Based UIs with Arquillian

-XX:G1MixedGCCountTarget

G1PeriodicGCInterval

G1PeriodicGCSystemLoadThreshold

https://openjdk.java.net/jeps/344
https://openjdk.java.net/jeps/346
https://blogs.oracle.com/javamagazine/epsilon-the-jdks-do-nothing-garbage-collector
https://blogs.oracle.com/javamagazine/understanding-garbage-collectors
https://blogs.oracle.com/javamagazine/testing-html-and-jsf-based-uis-with-arquillian

Raoul-Gabriel Urma
Raoul-Gabriel Urma (@raoulUK) is the CEO and
cofounder of Cambridge Spark, a leading learning
community for data scientists and developers in the
UK. He is also chairman and cofounder of
Cambridge Coding Academy, a community of young
coders and students. Urma is coauthor of the best-
selling programming book Java 8 in Action
(Manning Publications, 2015). He holds a PhD in
computer science from the University of Cambridge.

Richard Warburton
Richard Warburton (@richardwarburto) is a software
engineer, teacher, author, and Java Champion. He
is the author of the best-selling Java 8 Lambdas
(O’Reilly Media, 2014) and helps developers learn
via Iteratr Learning and at Pluralsight. Warburton
has delivered hundreds of talks and training
courses. He holds a PhD from the University of
Warwick.

Share this Page

Take Notes As You Code—Lots of ’em!
For the Fun of It: Writing Your Own Text Editor, Part 2
Quiz Yourself: Identify the Scope of Variables (Intermediate)
Quiz Yourself: Inner, Nested, and Anonymous Classes (Advanced)
Quiz Yourself: String Manipulation (Intermediate)
Quiz Yourself: Variable Declaration (Intermediate)
Book Review: The Pragmatic Programmer, 20th Anniversary Edition

Facebook

Twitter

LinkedIn

Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/raoul-gabriel-urma
https://blogs.oracle.com/javamagazine/raoul-gabriel-urma
https://blogs.oracle.com/javamagazine/richard-warburton
https://blogs.oracle.com/javamagazine/richard-warburton
https://blogs.oracle.com/javamagazine/take-notes-as-you-code-lots-of-em
https://blogs.oracle.com/javamagazine/for-the-fun-of-it-writing-your-own-text-editor-part-2
https://blogs.oracle.com/javamagazine/quiz-yourself-identify-the-scope-of-variables-intermediate
https://blogs.oracle.com/javamagazine/quiz-yourself-inner-nested-and-anonymous-classes-advanced
https://blogs.oracle.com/javamagazine/quiz-yourself-string-manipulation-intermediate
https://blogs.oracle.com/javamagazine/quiz-yourself-variable-declaration-intermediate
https://blogs.oracle.com/javamagazine/the-pragmatic-programmer-20th-anniversary-edition
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

