
September 2019

TESTING

Know for Sure with Property-Based
Testing
How do you test your code against
thousands of values?
by Johannes Link

August 19, 2019

Writing unit tests with a tool such as JUnit is an essential technique to
ensure the quality of your code. However, when a function requires many
test cases to check for all potential problems, testing becomes
burdensome and error-prone. Property-based testing (PBT) can rescue
and relieve you from writing dozens of test cases. In this article, I explain
what PBT is, how to use PBT on the JUnit 5 platform, and how it can
enhance and sometimes even replace example-based testing.

Example-Based Testing

Let’s say you’re working on a class that’s supposed to
 individual measurement values and count their respective

frequency in a tally. To check if your object works as expected, you can
use the following simple JUnit 5 test:

This kind of test is often called example-based because it uses a
concrete input example and checks whether the produced output
matches expectations for a specific situation. Most developers have
written similar tests for years or even decades—usually with good
success for detecting common programming errors. There is one
thought, though, that has always been nagging in the back of my mind:
How can I be confident that also works for five
measurements? Should I test with 5,000 elements, with none, or with
negative numbers? On a bad day, there is no end to the amount of doubt
I have about my code—and about the code of my fellow developers.

Properties

AggregatorAggregator

receivereceive

import java.util.*;import java.util.*;
import org.junit.jupiter.api.*;import org.junit.jupiter.api.*;

class AggregatorTests {class AggregatorTests {

 @Test @Test
 void tallyOfSeveralValues() { void tallyOfSeveralValues() {
 Aggregator aggregator = new Aggregator(); Aggregator aggregator = new Aggregator();
 aggregator.receive(1); aggregator.receive(1);
 aggregator.receive(2); aggregator.receive(2);
 aggregator.receive(3); aggregator.receive(3);
 aggregator.receive(2); aggregator.receive(2);

 Map<Integer, Integer> tally = aggregator.tal Map<Integer, Integer> tally = aggregator.tal
 Assertions.assertEquals(1, (int) tally.get(1 Assertions.assertEquals(1, (int) tally.get(1
 Assertions.assertEquals(2, (int) tally.get(2 Assertions.assertEquals(2, (int) tally.get(2
 Assertions.assertEquals(3, (int) tally.get(1 Assertions.assertEquals(3, (int) tally.get(1
 } }
}}

AggregatorAggregator

Know for Sure with Property-Based
Testing

Example-Based Testing

Properties

Automating Property Testing

Failing Properties

Integration of jqwik with JUnit 5

More jqwik Features

Programmatic Value Generation

Filtering, Mapping, and Combining

The Importance of Shrinking

Patterns for Finding Properties

Conclusion

Also in This Issue

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/september-2019
https://blogs.oracle.com/javamagazine/testing-3
https://junit.org/junit5/docs/current/user-guide/
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/

You can, however, approach the question of correctness from a different
angle: Under what preconditions and constraints (for example, the range
of input parameters) should the functionality under test lead to particular
postconditions (results of a computation), and which invariants should
never be violated in the course?

The combination of preconditions and qualities that are expected to be
present is called a property.

Let’s formulate some properties for in plain English:

All four sentences make rather general statements except for the last
one, which requires at least two measurements to make sense; each
property can be applied to any list of elements, regardless of whether the
list is empty or of considerable length. The measurements could fill the
whole range of type and they could be duplicated.

Automating Property Testing

How can properties be used for automatic testing? The statements
themselves seem to be translatable into code. Formulating the first
property as a Java method is straightforward, as follows:

What’s missing for a real automated test is a way to generate a set of
input lists, feed those lists to the method, and fail the test as soon as the
condition returns . This could all be done using vanilla JUnit but it
would require a lot of dedicated generation logic. And it can be done for
simple cases but will become burdensome as soon as the values to
generate become more complicated and more domain-specific. That’s
why I use another test engine: jqwik.

If you use jqwik, the previous code needs only the following minor
tweaking to become an executable property:

Let’s take a closer look at this code:

AggregatorAggregator

All measured values show up as keys in a tally.

Values that are never measured do not show up in a tally.

The sum of all tally counts is equal to the number of received
measurements.



The order of measuring does not change a tally.

IntegerInteger

boolean allMeasuredValuesShowUpAsKeys(List<Integer> boolean allMeasuredValuesShowUpAsKeys(List<Integer>
 Aggregator aggregator = new Aggregator(); Aggregator aggregator = new Aggregator();
 measurements.forEach(aggregator::receive); measurements.forEach(aggregator::receive);
 return measurements.stream() return measurements.stream()
 .allMatch(m -> aggregator.tally().containsKe .allMatch(m -> aggregator.tally().containsKe
}}

falsefalse

import java.util.*;import java.util.*;
import net.jqwik.api.*;import net.jqwik.api.*;

class AggregatorProperties {class AggregatorProperties {

 @Property @Property
 boolean allMeasuredValuesShowUpAsKeys(boolean allMeasuredValuesShowUpAsKeys(
 @ForAll List<Integer> measurements) @ForAll List<Integer> measurements)
 { {
 Aggregator aggregator = new Aggregator(); Aggregator aggregator = new Aggregator();
 measurements.forEach(aggregator::receive); measurements.forEach(aggregator::receive);
 return measurements.stream() return measurements.stream()
 .allMatch(m -> aggregator.tally().containsK .allMatch(m -> aggregator.tally().containsK
 } }
}}

A property is a method inside a container class. The method should
have an informative name.



allMeasuredValuesShowUpAsKeysallMeasuredValuesShowUpAsKeys

https://jqwik.net/

Running a successful jqwik property is as quiet as running a successful
JUnit test. If it is not instructed otherwise, jqwik will invoke each property
method 1,000 times with different input parameters. If needed, you can
tune the number as high or as low as you want.

Failing Properties

To see a property fail, let’s look at the third property from the list (the sum
of all tally counts is equal to the number of received measurements):

Currently, the tallying functionality contains a bug, so any value is
counted only once. In this case, jqwik should find an example that will
detect this bug. And indeed it does. Here is the output:

That’s quite a lot of information: You can see the number of test attempts
(), the number of actually run tests (), the random seed (

), the falsifying sample (), and other information that can
sometimes be useful.

In this example, jqwik succeeded in revealing a bug by generating lists
that have duplicate elements. If you had written the example tests
yourself, you might or might not have thought about this variant. By using
a PBT library, you gained test depth without needing to think up
additional examples. You must, however, be aware of what property-
based testing does not do: It cannot prove that a property is correct. All it
does is try to find examples that falsify a property.

Integration of jqwik with JUnit 5

is a reasonable summary of the property’s intent.

To mark a method as a property method, it must be annotated with
 so that IDEs and build tools will recognize it as such—

that is, if they support the JUnit platform.



@Property@Property

Adding parameters and annotating them with tells jqwik
that you want the framework to generate instances for you. A
parameter’s type, , is considered to be the
fundamental precondition.

 @ForAll@ForAll

List<Integer>List<Integer>

Returning a boolean value is the simplest form of communicating a
property’s necessary condition. Alternatively you can use any
assertion library such as AssertJ or JUnit 5 itself.



@Property@Property
boolean sumOfAllCountsIsNumberOfMeasurements(boolean sumOfAllCountsIsNumberOfMeasurements(
 @ForAll List<Integer> measurements) @ForAll List<Integer> measurements)
 { {
 Aggregator aggregator = new Aggregator(); Aggregator aggregator = new Aggregator();
 measurements.forEach(aggregator::receive); measurements.forEach(aggregator::receive);
 int sumOfAllCounts = int sumOfAllCounts =
 aggregator.tally().values() aggregator.tally().values()
 .stream().mapToInt(i -> i).sum(); .stream().mapToInt(i -> i).sum();
 return sumOfAllCounts == measurements.size(); return sumOfAllCounts == measurements.size();
}}

org.opentest4j.AssertionFailedError:
 Property [AggregatorProperties:sumOfAllCountsIsNum
 falsified with sample [[0, 0]]

 |--------------------j
tries = 11 | # of calls to proper
checks = 11 | # of not rejected ca
generation-mode = RANDOMIZED | parameters are rando
seed = -2353742209209314324 | random seed to repro

sample = [[0, 0]]
originalSample = [[2068037359, -1987879098, 15885572

tries checks

seed sample

https://joel-costigliola.github.io/assertj/

jqwik is not a standalone framework. Rather, it is a test engine that hooks
into JUnit 5. JUnit 5 not only provides a modernized approach for writing
and executing tests, but it is designed to be a platform for a large
spectrum of different test engines. The advantage of jqwik’s design is that
IDEs and build tools need to integrate only the JUnit platform, not the
individual test engines. This is a big advantage for test-engine developers
who don’t need to bother with aspects such as public APIs for
discovering and running their test specifications. Test engines
automatically inherit IDE and build-tool support.

Moreover, the platform enables developers to use any number of engines
in parallel. All you have to do is add a single additional dependency in
your Maven or Gradle setup. Currently, the two most used Java IDEs—
IntelliJ and Eclipse—come with excellent support for JUnit 5, as do
Gradle and Maven.

More jqwik Features

Currently, jqwik has all the essential features that property-based testers
require. For example, many standard types can be generated out of the
box. All , , , and types as well as
the built-in container types , , , , and

 are recognized. Thus, you can have a parameter of type
 and jqwik will automatically generate sets of lists

of strings for you.

There are many annotations that allow you to influence value generation
directly in a property method’s signature. Therefore, you might enhance
the type like this:

Making that change generates only sets with a length of 3 that
themselves contain lists with strings that use only the characters
through .

The generation of values is not purely random. It considers typical edges
and corner cases such as empty strings, the number 0, maxima and
minima of ranges, and a few others. If your constraints are tight enough,
jqwik will even exhaustively generate all possible value combinations.

Programmatic Value Generation

Sometimes you’re dealing with classes for which jqwik does not have
default generators. On other occasions, the domain-specific constraints
of a primitive type are so specific that existing annotations are not
powerful enough. In these cases, you can delegate the provision of
parameter generators to another method in your test container class. The
following example shows how to generate German postal codes by using
a provider method:

The value of the annotation is a reference to a
method’s name within the same class. This method must be annotated
with and must also return an object of type ,
where is the static type of the parameter to be provided.

NumberNumber StringString CharacterCharacter BooleanBoolean

ListList SetSet StreamStream IteratorIterator

OptionalOptional

Set<List<String>>Set<List<String>>

Set<List<String>>Set<List<String>>

@ForAll @Size(3) Set<List<@ForAll @Size(3) Set<List<
 @CharRange(min='a', max='f') String>> @CharRange(min='a', max='f') String>>
 aSetOfListsOfStrings aSetOfListsOfStrings

a

f

@Property @Report(Reporting.GENERATED)@Property @Report(Reporting.GENERATED)
void letsGenerateZipCodes(@ForAll("germanZipCode") Svoid letsGenerateZipCodes(@ForAll("germanZipCode") S

@Provide@Provide
Arbitrary<String> germanZipCode() {Arbitrary<String> germanZipCode() {
 return Arbitraries.strings() return Arbitraries.strings()
 .withCharRange('0', '9') .withCharRange('0', '9')
 .ofLength(5) .ofLength(5)
 .filter(z -> !z.startsWith("00")); .filter(z -> !z.startsWith("00"));
}}

StringString @ForAll@ForAll

@Provide@Provide @Arbitrary<T>@Arbitrary<T>

TT

https://jqwik.net/docs/current/user-guide.html#how-to-use
https://jqwik.net/docs/current/user-guide.html#exhaustive-generation
https://jqwik.net/docs/current/user-guide.html#default-parameter-generation

One problem that comes with random generation is that the relationship
between a randomly chosen falsifying example and the problem
underlying the failing property is often buried under a lot of noise.

Parameter provision methods usually start with a static method call to
 and are often followed by one or more filtering, mapping,

or combining actions, as described in the next section.

Filtering, Mapping, and Combining

As the base type of all value generation, the class comes
with a few default methods that can be used to modify generation
behavior. You usually start with one of the static generator functions of
the class . Most generator functions return a specific
subtype of that gives you additional configuration
possibilities through a fluent interface.

Let’s assume that you want to generate integers between 1 and 300 that
are multiples of 6. Here are two ways to achieve that:

Or

Which way is better? Sometimes it is only a matter of style or readability.
At other times, however, the way you choose can influence performance.
If you compare the two previous options, you can see the former is closer
to the given specification, but it will—through filtering—throw away five
out of six of all the generated values. The latter is, therefore, more
efficient but also less comprehensible. Usually, generating primitive
values is so fast that readability trumps efficiency.

Real domain objects often have several distinct and mostly unrelated
parts—for example, a would need a first name and last name.
That’s why it can be a good idea to start from unrelated base generators
and combine them. The following example creates an for
domain class by combining two entities into one:

You can combine up to eight entries in one go by using this
technique. If you want, you can register your own entries so
that they will be applied automatically to all parameters of your domain
type.

The Importance of Shrinking

One problem that comes with random generation is that the relationship
between a randomly chosen falsifying example and the problem

ArbitrariesArbitraries

ArbitraryArbitrary

ArbitrariesArbitraries

ArbitraryArbitrary

Arbitraries.integers()Arbitraries.integers()
 .between(1, 300) .between(1, 300)
 .filter(anInt -> anInt % 6 == 0) .filter(anInt -> anInt % 6 == 0)

Arbitraries.integers().between(1, 50)Arbitraries.integers().between(1, 50)
 .map(anInt -> anInt * 6) .map(anInt -> anInt * 6)

PersonPerson

ArbitraryArbitrary

PersonPerson ArbitraryArbitrary

@Provide@Provide
Arbitrary<Person> validPerson() {Arbitrary<Person> validPerson() {
 Arbitrary<String> firstName = Arbitraries.string Arbitrary<String> firstName = Arbitraries.string
 .withCharRange('a', 'z') .withCharRange('a', 'z')
 .ofMinLength(2).ofMaxLength(10) .ofMinLength(2).ofMaxLength(10)
 .map(this::capitalize); .map(this::capitalize);
 Arbitrary<String> lastName = Arbitraries.strings Arbitrary<String> lastName = Arbitraries.strings
 .withCharRange('a', 'z') .withCharRange('a', 'z')
 .ofMinLength(2).ofMaxLength(20); .ofMinLength(2).ofMaxLength(20);
 return Combinators return Combinators
 .combine(firstName, lastName).as(Person::new .combine(firstName, lastName).as(Person::new
}}

ArbitraryArbitrary

ArbitraryArbitrary

https://jqwik.net/docs/current/user-guide.html#providing-default-arbitraries

underlying the failing property is often buried under a lot of noise. A
simple example can illustrate this concern:

The property states the trivial mathematical concept that the square root
of a squared value should be equal to the original value. The first line
switched off shrinking by using the annotation attribute.
Running this property fails with a message similar to this:

The failing sample found by jqwik is random. The number itself does not
give you an obvious hint about the cause of the failure. Even the fact that
it is rather large might be a coincidence. At this point, you will either add
additional logging or start up the debugger to get more information about
the problem at hand.

PBT is based on the idea that you can find general and desired
properties for functions, components, and whole programs, and often
those properties can be falsified by the randomized generation of test
data.

Let’s take a different route by turning shrinking on with (
) and rerunning the property. The failure will be

the same, but reporting will show a change of the found falsifying
:

The number 46,341 is much smaller and it is different from the original
sample. After failing with 1,207,764,160, jqwik kept on trying to find a
simpler example that would also fail. This searching phase is called
shrinking because it starts with the original sample and tries to make it
smaller and smaller.

So what’s the special thing about 46,341 in this case? As you might have
guessed, the square of 46,341 equals 2,147,488,281, which is just a bit
larger than and will, therefore, lead to an integer
overflow. Conclusion: The property above holds only for integers up to
the square root of .

Shrinking is an important topic in PBT because it makes the analysis of
many failed properties much easier. It also reduces the amount of
indeterminism in PBT. Implementing good shrinking, however, is a
complicated task. From a theoretical perspective, you face a search
problem with a potentially very large search space. Because deep search
is time-consuming, many heuristics are applied to make shrinking both
effective and fast.

Patterns for Finding Properties

@Property(shrinking = ShrinkingMode.OFF)@Property(shrinking = ShrinkingMode.OFF)
boolean rootOfSquareShouldBeOriginalValue(boolean rootOfSquareShouldBeOriginalValue(
 @Positive @ForAll int anInt) @Positive @ForAll int anInt)
{{
 int square = anInt * anInt; int square = anInt * anInt;
 return Math.sqrt(square) == anInt; return Math.sqrt(square) == anInt;
}}

shrinkingshrinking

originalSample = [1207764160],
sample = [1207764160]

org.opentest4j.AssertionFailedError:
 Property [rootOfSquareShouldBeOriginalValue]
 falsified with sample [1207764160]

ShrinkingMode.FULLShrinkingMode.FULL

sample

sample = [46341]
originalSample = [1207764160]

Integer.MAX_VALUEInteger.MAX_VALUE

Integer.MAX_VALUEInteger.MAX_VALUE

When you take your first steps with PBT, finding suitable properties can
feel like a challenging task. Compared to typical property examples,
identifying real-world properties requires a different kind of thinking. A set
of useful patterns to guide your property detection can be handy. Luckily,
you do not need to discover all things on your own. PBT has been around
for a while and there is a small but well-known collection of property-
based testing patterns. My personal list is certainly incomplete, but here
are some typical sources:

Business rule as property. Sometimes the domain specification itself
can be interpreted and written as a property. Consider a business rule
such as: For all customers with a yearly turnaround greater than X € we
give an additional discount of Y percent, if the invoice amount is larger
than Z €. This can be straightforwardly translated into a property by
using arbitraries for X and Z and checking that the calculated discount is
indeed Y.

Inverse functions. If a function has an inverse function, applying the
function first and the inverse function second should return the original
input.

Idempotent functions. The multiple application of an idempotent
function should not change results. Ordering a list a second time, for
example, shouldn’t change it.

Invariant functions. Some properties of your code do not change after
applying your logic. For example, sorting and mapping should never
change the size of a collection, and after filtering out values from a list,
the remaining values should still be in the original order.

Commutativity. If a set of functions is commutative, a change of order in
applying the functions should not change the final result. For example,
sorting and then filtering should have the same effect as filtering and then
sorting.

A test oracle. Sometimes you know an alternative implementation of the
function under test. You can then use this implementation as a test
oracle: Any result of using the function should be the same for both the
original and alternative implementations. Here are some sample
alternatives:

Hard to compute, but easy to verify. Some logic is hard to execute but
easy to check. Consider, for example, the effort for finding prime numbers
versus checking a prime number.

Induction (that is, solve a smaller problem first). You might be able to
divide your domain check into a base case and a general rule derived
from that base case.

Stateful testing. Especially in the object-oriented world, an object’s
behavior can often be described as a state machine with a finite set of
states and actions to change state. Exploring the space of state
transitions is an important use case for PBT, and that’s why jqwik
provides special support for it.

Fuzzing. Code should never explode, even if you feed it with lots of
diverse and unforeseen input data. Thus, the main idea of this pattern is
to generate a large variety of input, execute the function under test, and
check the following:

Simple and slow versus complicated but fast

Parallel versus single-threaded

Self-made versus commercial

Old (prerefactoring) versus new (postrefactoring)

No exceptions occur, at least no unexpected ones.

There are no 5xx return codes for HTTP requests; maybe you even
require 2xx status all the time.



All return values are valid.

Runtime is under an acceptable threshold.

https://blog.ssanj.net/posts/2016-06-26-property-based-testing-patterns.html
https://jqwik.net/docs/current/user-guide.html#stateful-testing

Johannes Link
Johannes Link (@johanneslink) has been
developing software professionally for almost 25
years. As early as 2001, he got hooked on test-
driven development and wrote a book about it. He
was one of the core committers to JUnit 5 in its first
year. He is also the main developer of jqwik.

Share this Page

Fuzzing is often done in retrospect when you want to scrutinize the
robustness of existing code and systems.

Applying these patterns to your code requires practice. The patterns can,
however, be a good starting point for overcoming test writer’s block. The
more often you think about properties of your own code, the more
opportunities you will recognize to derive property-based tests from your
example-based tests. Sometimes they can serve as a complement;
sometimes they can even replace the old tests.

Conclusion

PBT is not a new technique; it has been used effectively in languages
such as Haskell and Erlang for more than a decade. PBT is based on the
idea that you can find general and desired properties for functions,
components, and whole programs, and often those properties can be
falsified by the randomized generation of test data.

jqwik is a JVM-based property test engine. Because it is built for the JUnit
5 platform, integration into all modern IDEs and build tools is seamless. If
you are not using JUnit 5 (yet), a couple of alternatives are available.
This article only scratches the surface of PBT. If you want to dive a bit
deeper, you might start with this blog series.

Also in This Issue

Arquillian: Easy Jakarta EE Testing
Unit Test Your Architecture with ArchUnit
The New Java Magazine
For the Fun of It: Writing Your Own Text Editor, Part 1
Quiz Yourself: Using Collectors (Advanced)
Quiz Yourself: Comparing Loop Constructs (Intermediate)
Quiz Yourself: Threads and Executors (Advanced)
Quiz Yourself: Wrapper Classes (Intermediate)
Book Review: Core Java, 11th Ed. Volumes 1 and 2



Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/johannes-link
https://blogs.oracle.com/javamagazine/johannes-link
https://jqwik.net/property-based-testing.html#alternative-tools-for-the-jvm
https://blog.johanneslink.net/2018/03/24/property-based-testing-in-java-introduction/
https://blogs.oracle.com/javamagazine/arquillian-easy-jakarta-ee-testing
https://blogs.oracle.com/javamagazine/unit-test-your-architecture-with-archunit
https://blogs.oracle.com/javamagazine/the-new-java-magazine
https://blogs.oracle.com/javamagazine/for-the-fun-of-it-writing-your-own-text-editor-part-1
https://blogs.oracle.com/javamagazine/quiz-advanced-collectors
https://blogs.oracle.com/javamagazine/quiz-intermediate-loop-constructs
https://blogs.oracle.com/javamagazine/quiz-advanced-executor-service
https://blogs.oracle.com/javamagazine/quiz-intermediate-wrapper-classes
https://blogs.oracle.com/javamagazine/core-java-11th-ed-volumes-1-and-2
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

