
DESIGN PATTERNS

The Visitor Design Pattern in Depth
Perform one or more operations on a
collection of different data types without
disrupting existing code.
by Ian Darwin

Suppose it’s your first day at a new job at a midsize company. You’ll
probably be escorted around the building and introduced to every
department of the organization. At each one you’ll say “Glad to meet you”
a few times and talk with the team there to discuss your common
projects, and then you’ll say “Nice to have met you.” And you’ll repeat this
for each department. Congratulations! You have just implemented the
Visitor design pattern in humanware.

The Pattern

Visitor is a useful pattern when you have many objects of different types
in your data structure and you want to apply some operation to several or
all of them. The pattern is helpful when you don’t know ahead of time all
the operations you will need; it gives you flexibility to add new operations
without having to add them to each object type. The basic idea is that a 

 object is taken around the nodes of a data structure by some
kind of iterator, and each node “accepts” the visitor, allowing it access to
that node object’s internal data. When a new function is needed, only a
new visitor needs to be written. The iteration is conceptually simple:

(There are two main code examples in this article; both can be found in
my GitHub repository. Code from other articles in this series on design
patterns can be found further up the trunk of that repository.)

The  objects must know how to accept the , and they will
usually call a method on the  that is appropriate to the type of
the node—for example:

Therefore, one consequence of this pattern is that the  needs to
know about all the node types it might encounter.

Double Dispatch

Many explanations of the Visitor pattern refer to it as double dispatch.
This term sometimes makes readers think of a two-step dispatching

VisitorVisitor

for (Node node : collection) {for (Node node : collection) {  
    node.accept(visitor);    node.accept(visitor);  
}}

NodeNode VisitorVisitor

VisitorVisitor

class TextNode implements Node {class TextNode implements Node {  
    void accept(Visitor v) {    void accept(Visitor v) {  
        v.visitTextNode(this);        v.visitTextNode(this);  
    }    }  
    // other state and methods    // other state and methods  
}}

VisitorVisitor

The Visitor Design Pattern in Depth

The Pattern

Double Dispatch

Visiting the Text

Revisiting the JDK

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine
 

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/design-patterns-2
https://github.com/IanDarwin/patterns-demos/tree/master/src/main/java/behavioral/visitor
https://oracle.dragonforms.com/ORA6028_Jfnew&pk=JFCM19
https://www.oracle.com/


process, as with a pointer to another pointer used in some languages.
That’s not what is meant. The term refers to the fact that both the type of
the visitor and the type of the node (or “receiver”) are used in sorting out
which method winds up doing the work. You can see this in the 

 method above: there’s the call to  and the call back
to .

Visiting the Text

Suppose I need to maintain a word processor that was written in Java.
There are a few data types (text node, image node, and so on). Common
operations, such as editing text, setting fonts, and setting colors, are
taken care of. But there are many supplemental operations that need to
be performed on the text, and new ones come along often as customers
provide feedback. Here’s what the text node’s class started as:

It’s becoming annoying that all the data types need to be modified every
time somebody has an idea for a new function. I know from experience
that I’m unlikely to be able to predict, at the start of the maintenance, all
the remaining functionality that will be needed. So I’ll introduce a Visitor
pattern.

The basic data structure is still the , with subclasses  and
. A real word processor would have more types of nodes, but

I want to focus on the Visitor pattern, not compete with the well-known
word processor that’s out there. Therefore,  is now an interface with
just one method:

I was tempted to call this interface  instead of . On one
hand,  is a more descriptive name for this version. On the
other hand, most formal definitions of Visitor use the term . I know
some of you will go to Wikipedia to get a second opinion after reading
this, and I don’t want to confuse anyone.

 could alternatively be an abstract class, but that would force all the
implementation classes to be related by inheritance, which may be an
unnecessary restriction.

 uses  as a type, so the next step is to define :

accept()accept() accept()accept()

visitTextNode()visitTextNode()

public class TextNodeOld extends Node {public class TextNodeOld extends Node {  
    private StringBuilder text = new StringBuilder(    private StringBuilder text = new StringBuilder(
  
    public TextNodeOld() {    public TextNodeOld() {  
        // empty        // empty  
    }    }  
  
    public TextNodeOld(String s) {    public TextNodeOld(String s) {  
        // Here, you know the StringBuilder exists a        // Here, you know the StringBuilder exists a
        text.append(s);        text.append(s);  
    }    }  
  
    public String getText() {    public String getText() {  
        return text.toString();        return text.toString();  
    }    }  
  
    public void setText(String text) {    public void setText(String text) {  
        this.text.setLength(0);        this.text.setLength(0);  
        this.text.append(text);        this.text.append(text);  
    }    }  
  
    // Lots of supplemental functionality methods he    // Lots of supplemental functionality methods he
    // that will be added below    // that will be added below  
}}

NodeNode TextNodeTextNode

ImageNodeImageNode

NodeNode

public interface Node {public interface Node {  
    abstract void accept(Visitor v);    abstract void accept(Visitor v);  
}}

Visitable NodeNode

Visitable

Node

NodeNode

NodeNode VisitorVisitor VisitorVisitor



Note that you could make all the methods be overloads of a single
method called , because the argument types are unique, but I
think this way is clearer. It’s a stylistic choice, so pick one way and try to
be consistent.

At any rate, here you meet the one complication of the Visitor pattern:
Visitors need to know how to visit every main kind of node.

The revised node classes themselves are not that interesting, so I didn’t
show their code—the  node has a  property; the  node
has a , a width, a height, and an optional  (which is
subclassed from ); and so on.

The iteration doesn’t need to be a for loop or even an iterator—any
means of traversing all the nodes is fine.

With all that structure in place, it’s time to start to write visitors. First,
suppose there’s a requirement to print a quick draft of the document,
without trying to display the images (this capability was in the
requirements from the days when graphics printers were expensive). The
text stored in a  might contain more characters than fit on a
line, so I use an existing program called  to crudely format lines to fit. 

 wants its input as a stream (even though in this case it’s only one
string), so the  method wraps the current 
’s string in an array and streams that to the  method of .

The  program requires a  for output, so the code on
the following page wraps  in a  before
passing the  around to all the nodes.

The  method doesn’t need to use , because
image captions are assumed to be one line long. The method simply gets
the text from the ’s caption (which is a subtype of ,
so it has a  method), defaulting to “no caption” if there is no
caption, and prints the result to .

The main demo program, , creates a demo
document and iterates over its  instances like this:

public abstract class Visitor {public abstract class Visitor {  
    public abstract void visitTextNode(TextNode text    public abstract void visitTextNode(TextNode text
  
    public abstract void visitImageNode(ImageNode im    public abstract void visitImageNode(ImageNode im
  
    // And so on for TableNode, SectionNode, VideoNo    // And so on for TableNode, SectionNode, VideoNo
}}

visit()visit()

TextText TextText ImageImage

FileNameFileName CaptionCaption

TextNodeTextNode

TextNodeTextNode

FmtFmt

FmtFmt

visitTextNode()visitTextNode() TextNodeTextNode

format()format() FmtFmt

static Visitor draftPrinterVisitor = new Visitor() {static Visitor draftPrinterVisitor = new Visitor() {
        @Override        @Override  
        public void visitTextNode(TextNode textNode        public void visitTextNode(TextNode textNode
            String[] lines = { textNode.getText() }            String[] lines = { textNode.getText() }
            Fmt.format(Stream.of(lines), out);            Fmt.format(Stream.of(lines), out);  
        }        }  
  
        @Override        @Override  
        public void visitImageNode(ImageNode imageNo        public void visitImageNode(ImageNode imageNo
            String caption = imageNode.caption != nu            String caption = imageNode.caption != nu
                imageNode.caption.getText() : "no ca                imageNode.caption.getText() : "no ca
            System.out.printf("Image: name='%s',            System.out.printf("Image: name='%s',  
                caption='%s'%n", imageNode.fileName                caption='%s'%n", imageNode.fileName
        }        }  
};};

FmtFmt PrintWriterPrintWriter

System.outSystem.out PrintWriterPrintWriter

draftPrinterVisitordraftPrinterVisitor

visitImageNode()visitImageNode() FmtFmt

ImageNodeImageNode TextNodeTextNode

getText()getText()

System.outSystem.out

WordProcessorDemo

NodeNode

out = new PrintWriter(System.out);out = new PrintWriter(System.out);  
    for (Node n : nodes) {    for (Node n : nodes) {  
        n.accept(draftPrinterVisitor);        n.accept(draftPrinterVisitor);  
    }    }  
out.flush();out.flush();



Note that the iteration doesn’t need to be a for loop or even an iterator—
any means of traversing all the nodes is fine.

Suddenly, someone from marketing rushes in and says, “Gee, this draft
format is neat. But the boss wants it to show the word count as well. Can
you add a function to compute that too?”

“No problem,” you can say, turning back to the code. Soon the new code
takes shape. The following  counts the number of words in text
nodes, and it even descends into s to get the word count of
the caption, if there is one.

This code is plugged into  in a similar fashion:

And when the code is run with the sample document, it prints this, which
turns out to be the correct answer:

Revisiting the JDK

Java 8 and later versions include two sets of visitor types: 
 or TypeVisitor, and . The 
 types are part of the package ,

which bills itself as “Classes and hierarchies of packages used to model
the Java programming language.” I don’t have room in this article to write
my own Java compiler, so I’ll skip the language-modeling types. But I’ll
note that the Visitor pattern is often explained in terms of a program
language compiler visiting the nodes of an abstract syntax tree (AST),
which is the output of the parsing phase.

VisitorVisitor

ImageNodeImageNode

public class WordCountVisitor extends Visitor {public class WordCountVisitor extends Visitor {  
  
    int wordCount = 0;    int wordCount = 0;  
  
    public int getWordCount() {    public int getWordCount() {  
        return wordCount;        return wordCount;  
    }    }  
  
    @Override    @Override  
    public void visitTextNode(TextNode textNode) {    public void visitTextNode(TextNode textNode) {  
        wordCount += wordCount(textNode.getText());        wordCount += wordCount(textNode.getText());  
    }    }  
  
    @Override    @Override  
    public void visitImageNode(ImageNode imageNode)     public void visitImageNode(ImageNode imageNode) 
        // You might say there's nothing to do, but         // You might say there's nothing to do, but 
        if (imageNode.caption != null) {        if (imageNode.caption != null) {  
            visitTextNode(imageNode.caption);            visitTextNode(imageNode.caption);  
        }        }  
    }    }  
  
    /** Simplistic implementation of word counting *    /** Simplistic implementation of word counting *
    private int wordCount(String text) {    private int wordCount(String text) {  
        // Replace all nonspace chars with nothing;        // Replace all nonspace chars with nothing;  
        // add one because "hello word" has one spac        // add one because "hello word" has one spac
        // but it is two words.        // but it is two words.  
        return text.trim().        return text.trim().  
            replaceAll("[^\\s]", "").length() + 1;            replaceAll("[^\\s]", "").length() + 1;  
    }    }  
}}

main()main()

Visitor wordCountVisitor = new WordCountVisitor();Visitor wordCountVisitor = new WordCountVisitor();  
for (Node n : nodes) {for (Node n : nodes) {  
    n.accept(wordCountVisitor);    n.accept(wordCountVisitor);  
}}  
System.out.printf("The document has about %d words%nSystem.out.printf("The document has about %d words%n
((WordCountVisitor) wordCountVisitor).getWordCount(((WordCountVisitor) wordCountVisitor).getWordCount(

The document has about 78 words

ElementVisitor FileVisitor

ElementVisitor javax.lang.model

https://docs.oracle.com/javase/8/docs/api/javax/lang/model/type/TypeVisitor.html


The Visitor pattern allows you to retain flexibility to add new methods at a
slight cost: the reduction of encapsulation and the need for every visitor
to know about all the different node types.

The  and its solitary implementation class, 
 in , are specialized for processing file

hierarchies. They do follow the  naming pattern. A typical use is
to subclass —overriding one or two of its four
methods—and pass an instance of it to the 
method. The nodes you’re visiting this time are actual file system nodes
(represented by inodes in the UNIX/Linux sense). The 
method performs the iteration, and it calls your ’s visitation
methods to “do something” at the beginning and end of each directory
and for each file in each directory. A simple directory lister, for example,
can be made with just the following visitor class (this example is in the 

 package in the GitHub repository):

I also need to invoke the  method to do the iteration,
using a  object to describe the directory. This code is in the 
method of :

This code works, although it’s obviously not a replacement for something
like the UNIX/Linux/MacOS ls command, which sorts the entries and has
a zillion options.

A slightly fancier version might indent one tab stop for each directory
level. There’s a start at making such a thing in the class 

 in my GitHub repository, although it doesn’t
work superbly yet. To try it, just change the instantiation of the 

 in the  method.

Conclusion

Besides the examples of the word processor add-on and directory
navigation, are there other uses of the Visitor pattern? Certainly!
Examples include its use in compilers (as mentioned earlier), report
writing where different people need different reports, and graphics
programs—in short, any application in which you need to add

FileVisitor

SimpleFileVisitor java.nio

visit…

SimpleFileVisitor

Files.walkFileTree()

walkFileTree()

FileVisitor

visitor.file

public class TrivialListerVisitor extends SimpleFilepublic class TrivialListerVisitor extends SimpleFile
  
    @Override    @Override  
    public FileVisitResult preVisitDirectory(Path di    public FileVisitResult preVisitDirectory(Path di
        BasicFileAttributes attrs) throws IOExceptio        BasicFileAttributes attrs) throws IOExceptio
        System.out.println("Start directory " + dir        System.out.println("Start directory " + dir
        return FileVisitResult.CONTINUE;        return FileVisitResult.CONTINUE;  
    }    }  
  
    @Override    @Override  
    public FileVisitResult visitFile(Path file,    public FileVisitResult visitFile(Path file,  
        BasicFileAttributes attrs) throws IOExceptio        BasicFileAttributes attrs) throws IOExceptio
        System.out.println(file.getFileName());        System.out.println(file.getFileName());  
        return FileVisitResult.CONTINUE;        return FileVisitResult.CONTINUE;  
    }    }  
}}  
</path></path>

walkFileTree()walkFileTree()

PathPath main()main()

FileVisitorDemo.java

// Set the starting path// Set the starting path  
Path startingPath = Paths.get(".");Path startingPath = Paths.get(".");  
  
// Instantiate the Visitor object// Instantiate the Visitor object  
FileVisitor<path> visitor = new TrivialFileVisitor(FileVisitor<path> visitor = new TrivialFileVisitor(
  
// Use the built-in walkFileTree client to// Use the built-in walkFileTree client to  
// visit all directory and file nodes// visit all directory and file nodes  
Files.walkFileTree(startingPath, visitor);Files.walkFileTree(startingPath, visitor);  
</path></path>

IndentingFileVisitor

FileVisitorFileVisitor mainmain



Ian Darwin
Ian Darwin (@Ian_Darwin) is a Java Champion who
has done all kinds of development, from mainframe
applications and desktop publishing applications for
UNIX and Windows, to a desktop database
application in Java, to healthcare apps in Java for
Android. He’s the author of Java Cookbook and
Android Cookbook (both from O’Reilly). He has also
written a few courses and taught many at Learning
Tree International.

Share this Page

   

functionality across a hierarchy without disrupting (or even changing) the
nodes in the hierarchy.

Visitor is like walking around a new company visiting all the teams and
having them accept you (the introductions) and give you their
impressions of your job (the visit). The Visitor pattern allows you to retain
flexibility to add new methods at a slight cost: the reduction of
encapsulation and the need for every visitor to know about all the
different node types. It’s not a one-size-fits-all pattern. It’s optimal when
the number of functionalities that you (might) have to add is significantly
greater than the number of node types in your data structure. If the
number of data types (node types) to be added is greater than the
functions you’ll need to add or you truly know that you won’t need to add
new functions very often, don’t use this pattern, but for the other cases,
you’ll find Visitor to be an elegant solution.

This article was originally published in the September/October 2018 issue of Java Magazine.



Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/ian-darwin
https://blogs.oracle.com/javamagazine/ian-darwin
https://www.oracle.com/a/ocom/docs/corporate/java-magazine-sept-oct-2018.pdf
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

