
REST

Make Java REST development
easier with the Jareto library
A small open source library helps with
mapping Java exceptions and
transporting HTTP metadata.

by Nenad Jovanovic

May 14, 2021

The Java ecosystem makes it easy to implement REST
services. Using Java EE, Jakarta EE, JAX-RS, and JSON-B, the
source code of a REST service looks like a plain Java program,
enhanced with a few easy-to-understand annotations.

With the MicroProfile REST client, the same has become true for
implementing the invoking side.

You don’t have to manually translate between the Java domain
objects and their on-the-wire representation, since this is done
automatically by JSON-B (as opposed to JSON-P).

However, there are several common use cases that still require
additional boilerplate code if you want to remain on this level of
abstraction. Jareto is a small Java library that provides useful

@Path("process")@Path("process")
@POST@POST
public OutputBean process(InputBean input) {public OutputBean process(InputBean input) {
 // process input, create & return output - // process input, create & return output -
}}

// create the MicroProfile REST client using // create the MicroProfile REST client using
// can also be injected using @RestClient// can also be injected using @RestClient
IService service = RestClientBuilder.newBuildIService service = RestClientBuilder.newBuild
 .baseUri(/* service URI, preferably from co .baseUri(/* service URI, preferably from co
 .register(/* your preferred provider for JS .register(/* your preferred provider for JS
 .build(IService.class); .build(IService.class);
OutputBean output = service.process(input);OutputBean output = service.process(input);

Make Java REST development
easier with the Jareto library

Jareto setup

Mapping Java exceptions

Transporting HTTP metadata

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/rest-2
https://www.oracle.com/java/technologies/java-ee-glance.html
https://jakarta.ee/release/9/
https://jcp.org/en/jsr/detail?id=370
https://jcp.org/en/jsr/detail?id=367
https://github.com/eclipse/microprofile-rest-client
https://jcp.org/en/jsr/detail?id=374
https://svc-ehealth.github.io/jareto/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

features in an easy-to-use way, for both server- and client-side
development.

Depending on your requirements, you can use the server-side
part of Jareto, or the client-side part, or both.

Jareto, created by my company, SVC, is available on GitHub
under the Apache License Version 2.0 License. There, you can
also find a demo project with a sample web application and JUnit
tests.

Jareto setup

To use the features provided by Jareto, add the following Maven
dependencies to your project:

Jareto’s features are implemented using JAX-RS providers. To
prevent accidental activation of certain providers that you don’t
need or want (with future extensions in mind), Jareto politely
abstains from autoregistration of providers. Instead, you must
explicitly return the Jareto provider classes from the

 method of the server-side Application class, as
follows:

For mapping Java exceptions: On the server side, Jareto
helps with serialization to HTTP wire data (JSON); these
JSON exceptions can also be parsed by non-Java clients
and are customizable and allow transport of structured
data. On the client side, Jareto helps with client
deserialization from HTTP wire data (JSON).



For transporting HTTP metadata: Jareto helps with HTTP
status codes and headers.



<!-- for using server-side features --><!-- for using server-side features -->
<dependency><dependency>
 <groupId>at.co.svc.jareto</groupId> <groupId>at.co.svc.jareto</groupId>
 <artifactId>jareto-server</artifactId> <artifactId>jareto-server</artifactId>
 <version>INSERT LATEST VERSION HERE</versio <version>INSERT LATEST VERSION HERE</versio
</dependency></dependency>

<!-- for using client-side features --><!-- for using client-side features -->
<dependency><dependency>
 <groupId>at.co.svc.jareto</groupId> <groupId>at.co.svc.jareto</groupId>
 <artifactId>jareto-client</artifactId> <artifactId>jareto-client</artifactId>
 <version>INSERT LATEST VERSION HERE</versio <version>INSERT LATEST VERSION HERE</versio
</dependency></dependency>

getClassesgetClasses

public class BeanServiceConfig extends Applicpublic class BeanServiceConfig extends Applic

 @Override @Override
 public Set<Class<?>> getClasses() { public Set<Class<?>> getClasses() {
 Set<Class<?>> classes = new HashSet<>(); Set<Class<?>> classes = new HashSet<>();
 // add the Jareto providers for server-si // add the Jareto providers for server-si
 classes.addAll(ServerProviders.getAll()); classes.addAll(ServerProviders.getAll());
 // add your service's resource classes // add your service's resource classes
 // ... // ...
 return classes; return classes;

https://github.com/svc-ehealth/jareto
https://github.com/svc-ehealth/jareto/tree/master/jareto-demo
https://jakarta.ee/specifications/platform/8/apidocs/javax/ws/rs/ext/provider
https://jakarta.ee/specifications/platform/8/apidocs/javax/ws/rs/core/application

Likewise, if you want to use Jareto in a REST client, you must
register the Jareto provider classes during client construction.

Mapping Java exceptions

Without additional measures, throwing a runtime or checked
exception from your service usually results in a stack trace being
returned to the invoker. Apart from the security implications, this
prevents clients from identifying and handling exceptional cases
in an automated way, so this is usually not what you want.

JAX-RS specifies an unchecked WebApplicationException that
allows you to customize both the HTTP response status and the
returned payload. However, you would still have to

Jareto provides both a checked and an
unchecked that accept the following
data during construction:

In the simplest possible case, an exception such as

will be automatically translated to the JSON HTTP response
body as follows

 } }

}}

RestClientBuilder builder = RestClientBuilderRestClientBuilder builder = RestClientBuilder
ClientProviders.registerAll(builder);ClientProviders.registerAll(builder);

Provide the payload using a lower-level JAX-RS response

Take care of unexpected exceptions such as
 (by means of a global

exception handler)


NullPointerExceptionNullPointerException

AppExceptionAppException

AppRuntimeExceptionAppRuntimeException

Error message

Error code

Error detail code (optional)

HTTP status code (optional; defaults to 500)

throw new AppException("some-error-code", "sothrow new AppException("some-error-code", "so

{{
 "code": "some-error-code", "code": "some-error-code",
 "text": "some error text" "text": "some error text"
}}

https://jakarta.ee/specifications/platform/8/apidocs/javax/ws/rs/webapplicationexception
https://jakarta.ee/specifications/platform/8/apidocs/javax/ws/rs/core/response

Note that certain JSON-B implementations might also include
the optional property with a value.

Other types of are mapped using the
following default values:

Jareto exposes a hook that is invoked during exception
mapping, which lets you customize the default JSON attributes
to be returned for and the logging
behavior (no logging for Jareto exceptions; level ERROR for

).

You can also return additional JSON attributes by extending
 and passing it to the exception’s

constructor.

In theory, transporting exception data would also be possible via
HTTP headers (instead of JSON inside the HTTP response
body). Even though this alternative might seem appealing at first
glance, it does not scale to advanced use cases where
exceptions will contain more-complex, structured data. In this
respect, Jareto’s exception handling resembles that of GraphQL,
which is also capable of returning arbitrary error data inside the
response payload.

By contrast, a MicroProfile REST client equipped with Jareto can
catch and handle these exceptions, since they are automatically
created from the incoming JSON representation.

detailCodedetailCode nullnull

RuntimeExceptionRuntimeException

{{
 "code": "UNEXPECTED_ERROR", "code": "UNEXPECTED_ERROR",
 "text": "An unexpected error has occurred "text": "An unexpected error has occurred
}}

RuntimeExceptionRuntimeException

RuntimeExceptionRuntimeException

WebApplicationExceptionFactory.registerCustomWebApplicationExceptionFactory.registerCustom
 // customize behavior by overriding the app // customize behavior by overriding the app
});});

AppExceptionDataAppExceptionData

@JsonbPropertyOrder({ "code", "detailCode", "@JsonbPropertyOrder({ "code", "detailCode", "
public class CustomizedExceptionData extends public class CustomizedExceptionData extends

 // this bonus String shall also be transpor // this bonus String shall also be transpor
 private String bonus; private String bonus;

}}

......

throw new AppException(new CustomizedExceptiothrow new AppException(new CustomizedExceptio

https://graphql.org/

For security reasons (to prevent Java deserialization attacks),
customized exception data types must be explicitly registered by
the client, as follows:

To summarize the exception mapping features, Jareto provides
you with exception types that your service can throw and your
client can catch, and that contain extensible, commonly used
exception data—without the need for any additional boilerplate
code. This is especially useful when creating new Java-based
microservices that communicate with each other via REST. From
the developer’s perspective, throwing and catching exceptions
feels the same as it is with plain, local invocations.

Transporting HTTP metadata

Although a MicroProfile REST client greatly simplifies
invocations by (re-)using the service’s Java interface, it does not
offer any direct access to HTTP request headers or to HTTP
response status and headers. To gain access to these, you
would have to write additional
and code. With Jareto, you can simply
do the following on the client side:

The client-side API is deliberately designed to be usable also in
standalone Java environments without Contexts and
Dependency Injection (CDI). This way, running Java-based
system tests against your REST service is quick and easy, as it
does not require any CDI setup.

On the server side, simple access to the HTTP headers does not
require anything other than and

try {try {
 service.process(); service.process();
}}
catch (AppException e) {catch (AppException e) {
 System.out.println("error code: " + e.getDa System.out.println("error code: " + e.getDa
 System.out.println("error text: " + e.getDa System.out.println("error text: " + e.getDa
 System.out.println("HTTP response status: " System.out.println("HTTP response status: "
 System.out.println((CustomizedExceptionData System.out.println((CustomizedExceptionData
}}

ClientExceptionMapper.registerEntityClass(CusClientExceptionMapper.registerEntityClass(Cus

ResponseExceptionMapperResponseExceptionMapper

ClientRequestFilterClientRequestFilter

// read HTTP response status// read HTTP response status
ClientResponse.CONTEXT.get().getStatus();ClientResponse.CONTEXT.get().getStatus();

// read HTTP response header// read HTTP response header
ClientResponse.CONTEXT.get().getHeaderString(ClientResponse.CONTEXT.get().getHeaderString(

// add HTTP request header// add HTTP request header
ClientRequestHeaders.addHeader("custom-headerClientRequestHeaders.addHeader("custom-header

HttpServletRequestHttpServletRequest

https://download.eclipse.org/microprofile/microprofile-rest-client-1.4.1/apidocs/org/eclipse/microprofile/rest/client/ext/ResponseExceptionMapper.html
https://jakarta.ee/specifications/platform/8/apidocs/javax/ws/rs/client/clientrequestfilter
https://jakarta.ee/specifications/platform/8/apidocs/javax/servlet/http/httpservletrequest
https://jakarta.ee/specifications/platform/8/apidocs/javax/servlet/http/httpservletresponse

 from Jakarta EE.

Alternatively, reading HTTP request headers is also possible by
using the JAX-RS annotation .

In case you would like to add a static HTTP header to your
responses, you can do so by using Jareto’s annotation
at the class or method level of your REST service interface or
implementation.

Having already injected the for
accessing the headers on the server, it might appear that setting
the response status requires only one more line.

However, at least with WildFly 22 and Payara 5.2020.7, this line
is not effective on its own. In addition, it requires an explicit flush,
which lacks optical appeal and prevents later operations (such
as response filters) from adding other headers.

HttpServletResponseHttpServletResponse

@Context@Context
private HttpServletRequest request;private HttpServletRequest request;

@Context@Context
private HttpServletResponse response;private HttpServletResponse response;

public void process() {public void process() {

 // read HTTP request header // read HTTP request header
 System.out.println(request.getHeader("reque System.out.println(request.getHeader("reque

 // add HTTP response header // add HTTP response header
 response.addHeader("response-header-name", response.addHeader("response-header-name",

}}

HeaderParamHeaderParam

@Header@Header

@Path("service")@Path("service")
@Header(name = "class-response-header-name", @Header(name = "class-response-header-name",
public interface IService {public interface IService {

 @Path("ping") @Path("ping")
 @GET @GET
 @Header(name = "method-response-header-name @Header(name = "method-response-header-name
 public String process(); public String process();

HttpServletResponseHttpServletResponse

@Context@Context
private HttpServletResponse response;private HttpServletResponse response;

public void process() {public void process() {

 // trying to set the HTTP status: does it w // trying to set the HTTP status: does it w
 response.setStatus(201); response.setStatus(201);

}}

https://jakarta.ee/specifications/platform/8/apidocs/javax/ws/rs/headerparam
https://www.wildfly.org/
https://www.payara.fish/downloads/payara-platform-community-edition/

Nenad Jovanovic

For this reason, Jareto allows you to set the HTTP status in the
following way:

Conclusion

When developing REST services and clients, transporting
exceptions is a fundamental use case, but it still requires a
certain amount of boilerplate code. Likewise, access to HTTP
metadata (status code and headers) is not as convenient as it
should be. Jareto addresses these issues by making just a few
basic assumptions about how exceptions should be serialized to
wire data and reducing the developer’s part in the equation to
the absolute minimum. In doing so, Jareto is

The features described in this article are based on the solid
foundations provided by Jakarta EE and MicroProfile. On the
shoulders of these giants, Jareto further improves the developer
experience for creating new REST microservices.

Dig deeper

@Context@Context
private HttpServletResponse response;private HttpServletResponse response;

public void process() {public void process() {

 response.setStatus(201); response.setStatus(201);
 try { try {
 response.flushBuffer(); response.flushBuffer();
 } }
 catch (IOException e) { catch (IOException e) {

 } }

}}

@Inject@Inject
private ServiceResponseBuilder responseBuildeprivate ServiceResponseBuilder responseBuilde

......

responseBuilder.get().status(DESIRED_STATUS);responseBuilder.get().status(DESIRED_STATUS);

Small (around 1,000 lines of code)

Easy to understand and use

Jareto documentation

Jareto source code

Jareto binaries

https://blogs.oracle.com/javamagazine/nenad-jovanovic
https://svc-ehealth.github.io/jareto
https://github.com/svc-ehealth/jareto
https://search.maven.org/search?q=g:at.co.svc.jareto

Nenad Jovanovic is a Java developer,
software architect, and enterprise architect
at SVC, an Austrian company that develops
e-health solutions in the public sector. SVC
is the creator of the Jareto project. In his
spare time, Jovanovic writes Java- and IT-
related blog articles.

Share this Page

 

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/nenad-jovanovic
https://twitter.com/EnjiSystems
https://www.svc.co.at/
https://enji.systems/
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

