
TOOLS

Project Lombok: Clean, Concise
Code
Try adding Lombok to an application
and see how many lines of code you
can cut.

by Josh Juneau

May 1, 2017

Imagine that you are coding a Java application and creating a
plain old Java object (POJO), a Java class with several private
fields that will require getter and setter methods to provide
access. How many lines of code will be needed to generate
getters and setters for each of the fields? Moreover, adding a
constructor and a method will cause even more
lines of code and clutter. That is a lot of boilerplate code. How
about when you are utilizing Java objects that need to be closed
after use, so you need to code a block or use try-with-
resources to ensure that the object closing occurs? Adding

 block boilerplate to close objects can add a significant
amount of clutter to your code.

Project Lombok is a mature library that reduces boilerplate code.
The cases mentioned above cover just a few of those where
Project Lombok can be a great benefit. The library replaces
boilerplate code with easy-to-use annotations. In this article, I
examine several useful features that Project Lombok provides—
making code easier to read and less error-prone and making
developers more productive. Best of all, the library works well
with popular IDEs and provides a utility to “delombok” your code
by reverting—that is, adding back all the boilerplate that was
removed when the annotations were added.

Check for Nulls

Let’s start with one of the most basic utilities that Lombok has to
offer. The annotation, which should not be confused
with the Bean Validation annotation, can be used to generate a
null check on a setter field. The check throws a

toString()toString()

finallyfinally

finallyfinally

@NonNull@NonNull

Project Lombok: Clean,
Concise Code

Check for Nulls

Concise Data Objects

Can’t My IDE Do That?

Builder Objects

Easy Cleanup

Locking Safely

Effortless Logging

Other Useful Items

Conclusion

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/tools-7
https://projectlombok.org/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

 if the annotated class field contains a
null value. Simply apply it to a field to enforce the rule:

This code generates the following code:

Primitive parameters cannot be annotated with . If
they are, a warning is issued and no null check is generated.

Concise Data Objects

Writing a POJO can be laborious, especially if there are many
fields. If you are developing a POJO, you should always provide
private access directly to the class fields, while creating
accessor methods—getters and setters—to read from and write
to those fields. Although developing accessor methods is easy,
they generally are just boilerplate code. Lombok can take care of
generating these methods if a field is annotated with
and . Therefore, the following two code listings provide
the exact same functionality.

Without Project Lombok:

Using Project Lombok:

As you can see, Lombok not only makes the code more concise,
but it also makes the code easier to read and less error-prone.
These annotations also accept an optional parameter to
designate the access level if needed. More good news:

 and respect the proper naming conventions,
so generated code for a Boolean field results in accessor
methods beginning with is rather than get. If they are applied at
the class level, getters and setters are generated for each
nonstatic field within the class.

NullPointerExceptionNullPointerException

@NonNull @Setter @NonNull @Setter
private String employeeId;private String employeeId;

public id setEmployeeId(@NonNull final Stringpublic id setEmployeeId(@NonNull final String
 if(employeeId == null) throw if(employeeId == null) throw
 new java.lang.NullPointerException("emp new java.lang.NullPointerException("emp
 this.employeeId = employeeId; this.employeeId = employeeId;

@NonNull@NonNull

@Getter@Getter

@Setter@Setter

private String columnName;private String columnName;
public String getColumnName(){public String getColumnName(){
 return this.columnName; return this.columnName;
} public void setColumnName(String columnName} public void setColumnName(String columnName
 this.columnName = columnName; this.columnName = columnName;
}}

@Getter @Setter private String columnName;@Getter @Setter private String columnName;

@Getter@Getter @Setter@Setter

In many cases, data objects also should contain the ,
, and methods. This boilerplate can

be taken care of by annotating a class with the
 and annotations,

respectively. These annotations cause Lombok to generate the
respective methods, and they are customizable so that you can
specify field exclusions and other factors. By default, any
nonstatic or nontransient fields are included in the logic that is
used to compose these methods. These annotations use the
attribute to specify methods that should not be
included in the logic. The attribute accepts a
or , and it indicates whether to use the method
of the superclass to verify equality. The following code
demonstrates the use of these annotations.

The annotation can be used to apply functionality behind
all the annotations discussed thus far in this section. That is,
simply annotating a class with causes Lombok to
generate getters and setters for each of the nonstatic class fields
and a class constructor, as well as the ,
, and methods. It also creates a constructor that
accepts any final fields or those annotated with as
arguments. Finally, it generates default ,

, and methods that take all class fields
and methods into consideration. This makes the coding of a
POJO very easy, and it is much the same as some alternative
languages, such as Groovy, that offer similar features. Listing 1
(all listings for this article can be downloaded here) shows the
full Java code for the POJO that is generated by the following
code:

Note that if you create your own getters or setters, Lombok does
not generate the code even if the annotations are present. This
can be handy if you wish to develop a custom getter or setter for
one or more of the class fields.

equals()equals()

hashCode()hashCode() toString()toString()

@EqualsAndHashCode@EqualsAndHashCode @ToString@ToString

excludeexclude

callSupercallSuper truetrue

falsefalse equals()equals()

@EqualsAndHashCode@EqualsAndHashCode
@ToString(exclude={" columnLabel"})@ToString(exclude={" columnLabel"})
public class ColumnBean {public class ColumnBean {
 private BigDecimal id; private BigDecimal id;
 private String columnName; private String columnName;
 private String columnLabel; private String columnLabel;
}}

@Data@Data

@Data@Data

toString()toString() equals()equals()

hashCode()hashCode()

@NonNull@NonNull

toString()toString()

equals()equals() hashCode()hashCode()

@Data @Data
public class ColumnBean {public class ColumnBean {
 @NonNull @NonNull
 private BigDecimal id; private BigDecimal id;
 @NonNull @NonNull
 private String columnName; private String columnName;
 @NonNull @NonNull
 private String columnLabel; private String columnLabel;
}}

https://bitbucket.org/javamagazine/magdownloads/wiki/2017%20May-June:%20Libraries

If you are merely interested in having constructors generated
automatically, and

 might be of use.
 creates a constructor for the class

using all the fields that have been declared. If a field is added or
removed from the class, the generated constructor is revised to
accommodate this change. This behavior can be convenient for
ensuring that a class constructor always accepts values for each
of the class fields. The disadvantage of using this annotation is
that reordering the class fields causes the constructor arguments
to be reordered as well, which could introduce bugs if there is
code that depends upon the position of arguments when
generating the object. simply generates
a no-argument constructor.

The annotation is similar to the annotation, but it
generates an immutable class. The annotation is placed at the
class level, and it invokes the automatic generation of getters for
all private final fields. No setters are generated, and the class is
marked as . Lastly, the , , and

 methods are generated, and a constructor is
generated that contains arguments for each of the fields.

Can’t My IDE Do That?

You might be asking yourself, “Can’t my IDE already do that sort
of refactoring?” Most modern IDEs—such as NetBeans, Eclipse,
and IntelliJ—offer features such as encapsulation of fields and
auto-generation of code. These abilities are great because they
can significantly increase productivity. However, these
capabilities do not reduce code clutter, so they can lead to
refactoring down the road. Let’s say your Java object has 10
fields. To conform to a JavaBean, it will contain 20 accessor
methods (one getter and setter pair per field). That’s a lot of
clutter. Also, what happens when you decide to change one of
your field names? You’ll have to do some refactoring in order to
change it cleanly. If you’re using Lombok, you simply change the
field name and move on with your life.

Builder Objects

Sometimes it is useful to have the ability to develop a builder
object, which allows objects to be constructed using a step-by-
step pattern with controlled construction. For example, in some
cases large objects require several fields to be populated, which
can be problematic when such an object is implemented via a
constructor.

Lombok makes it simple to create builder objects in much the
same way that it enables easy POJO creation. Annotating a
class with produces a class that adheres to the
builder pattern—that is, an inner builder class is produced that
contains each of the class fields. (“Builder” is preceded by the
name of the class. So a class named has a

@AllArgsConstructor@AllArgsConstructor

@NoArgsConstructor@NoArgsConstructor

@AllArgsConstructor@AllArgsConstructor

@NoArgsConstructor@NoArgsConstructor

@Value@Value @Data@Data

finalfinal toString()toString() equals()equals()

hashCode()hashCode()

@Builder@Builder

FooFoo FooBuilderFooBuilder

class generated.) The generated builder class contains a “setter”
method for each of the class fields, but the names of the
methods do not include the usual “set” prefix. The methods
themselves set the value that is passed into the methods, and
then they return the builder object. Listing 2 in the
downloadable code demonstrates a class that contains a builder,
and Listing 3 demonstrates the same object annotated with

.

Several variations can be used with . For example,
the annotation can be placed on the class, on a constructor, or
on a method. Placing the annotation on a constructor produces
the same builder object shown in Listing 2, but it generates
methods for each of the constructor’s arguments in the builder.
This means that you can omit a class field from the constructor,
or you can choose to include a superclass field in the
constructor. The only way to include superclass fields in a
builder is for an object to contain a superclass.

The attribute of the annotation accepts
 or , and it can be used to designate whether a

 method is included in the generated builder
object. This method copies the contents of an existing object of
the same type.

It is possible to treat one of the fields as a builder collection by
annotating it with . This causes two adder methods
to be generated—one to add a single element and another to
add all elements. This annotation also causes a
method to be generated, which clears the contents of the
collection.

Easy Cleanup

Lombok makes it easy to clean up resources as well. How often
have you either forgotten to close a resource or written lots of
boilerplate blocks to accommodate resource
closing? Thanks to the annotation, you no longer
need to worry about forgetting to release a resource.

Although the Java language now contains the try-with-resources
statement to help close resources, can be a useful
alternative in some cases, because it causes a
block to be generated around the subsequent code, and then it
calls the annotated resource’s method. If the cleanup
method for a given resource is not named , the cleanup
method name can be specified with the annotation’s value
attribute. Listing 4 in the downloadable code demonstrates a
block of code that contains some lines to manually close the
resource. Listing 5 demonstrates the same block of code using

.

It is important to note that in a case where code throws an
exception and then subsequent code invoked via

@Builder@Builder

@Builder@Builder

toBuildertoBuilder @Builder@Builder

truetrue falsefalse

toBuilder()toBuilder()

@Singular@Singular

clear()clear()

try-catchtry-catch

@Cleanup@Cleanup

@Cleanup@Cleanup

try-finallytry-finally

close()close()

close()close()

@Cleanup@Cleanup

@Cleanup@Cleanup

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html

also throws an exception, the original exception will be hidden by
the subsequently thrown exception.

Locking Safely

To ensure safety by having only one thread that can access a
specified method at a time, the method should be marked as

. Lombok supplies an even safer way to ensure
that only one thread can access a method at a time: the

 annotation. This annotation can be used only
on static and instance methods, just like the
keyword. However, rather than locking on this, the annotation
locks on a private field named for nonstatic methods and
on for static methods. This field is autogenerated if it
does not already exist, or you can create it yourself. You can
also specify a different lock field by specifying it as a parameter
to . The following code illustrates the use of

:

This solution can be a safer alternative to using the
 keyword, because it allows you to lock on an

instance field rather than on .

Effortless Logging

Most logging requires some declaration to set up a logger within
each class. This code is definitely repetitive boilerplate code.
Lombok can take care of the logger declaration if you place the

 annotation (or an annotation pertaining to your choice of
logging API) on any class that requires logging capability.

For instance, if you wish to use a logging API—say, Log4j 2—
each class that uses the logger must declare something similar
to the following:

Lombok makes it possible to do the following instead:

synchronizedsynchronized

@Synchronized@Synchronized

synchronizedsynchronized

$lock$lock

$LOCK$LOCK

@Synchronized@Synchronized

@Synchronized@Synchronized

@Synchronized@Synchronized
public static void helloLombok() {public static void helloLombok() {
 System.out.println("Lombok"); System.out.println("Lombok");
}}

synchronizedsynchronized

thisthis

@Log@Log

public class ClassName() {public class ClassName() {
 private static final org.apache.log4j.Logg private static final org.apache.log4j.Logg
 org.apache.log4j.Logger.getLogger(Class org.apache.log4j.Logger.getLogger(Class
.

// Use log variable as needed }// Use log variable as needed }

@Log4j2 @Log4j2
public class ClassName() { public class ClassName() {
.

https://logging.apache.org/log4j/2.x/

Listing 6 in the downloadable code shows an example using
Log4j 2. The name of the logger will automatically be the same
as its containing class’s name. However, this can be customized
by specifying the topic attribute of the respective logging
annotation. For a complete listing of supported logging APIs,
refer to the Lombok documentation and the Lombok Javadoc.

Other Useful Items

There are several other useful features Lombok offers that I
haven’t yet covered. Let’s go through a couple of the most highly
used.

Informal declaration. The keyword can be used in place of
an object type when you declare a local final variable, much like
the keyword that you have seen in alternative languages
such as Groovy or Jython. Take the following code, for instance:

Using the keyword, you can change the code to the
following:

There are some considerations for using the keyword. First,
as mentioned previously, it marks the method declaration as

. Therefore, if you later need to change the value of the
variable, using the keyword is not possible. It also does not
work correctly in some IDEs, so if you are trying to mark local
variables as in those IDEs, they are flagged as errors.

Be sneaky with exceptions. There are occasions where
exception handling can become a burden, and I’d argue that this
is typically the case when you are working with boilerplate
exceptions. Most of the time, Java allows you to easily see
where problems exist via the use of checked exceptions.
However, in those cases where checked exceptions are
burdensome, you can easily hide them using Lombok.

The annotation can be placed on a method to
essentially “swallow” the exceptions, allowing you to omit the

 block completely. The annotation allows a method
to handle all exceptions quietly, or you can specify exactly which
exceptions to ignore by passing the exception classes to the
annotation as attributes. Listing 7 in the downloadable code
demonstrates the use of specifying which
exceptions to swallow.

// Use log variable as needed // Use log variable as needed
}}

valval

valval

final ArrayList<Job> myJobs = new ArrayList<Jfinal ArrayList<Job> myJobs = new ArrayList<J

valval

val myJobs = new ArrayList<Job>();val myJobs = new ArrayList<Job>();

valval

finalfinal

valval

finalfinal

SneakyThrowsSneakyThrows

try-catchtry-catch

@SneakyThrows@SneakyThrows

http://jnb.ociweb.com/jnb/jnbJan2010.html
https://projectlombok.org/api/index.html

I want to reiterate that this Lombok feature should be used with
caution, because it can become a real issue if too many
exceptions are ignored.

Lazy getters. It is possible to indicate that a field should have a
getter created once, and then the result should be cached for
subsequent invocations. This can be useful if your getter method
is expensive as far as performance goes. For instance, if you
need to populate a list from a database query, or you need to
access a web service to obtain the data for your field on the first
access, it might make sense to cache the result for subsequent
calls. To use this feature, a private final variable must be
generated and initialized with the expensive expression. You can
then annotate the field with to
implement this functionality.

IDE compatibility. Lombok plays well with the major IDEs, so
simply including Lombok in your project and annotating
accordingly typically does not generate errors in code or cause
errors when the generated methods are called. In fact, in
NetBeans the class is populated with the generated
methods after annotations are placed and the code is saved,
even though the methods do not appear in the code. Auto-
completion works just as if the methods were typed into the
class, even when generated properties are accessed from a web
view in expression language.

Even more-concise Java EE. Over the past few years, Java EE
has been making good headway on becoming a very productive
and concise platform. Those of you who recall the laborious
J2EE platform can certainly attest to the great number of
improvements that have been made. I was very happy to learn
that Lombok plays nicely with some Java EE APIs, such as Java
Persistence API (JPA). This means it is very easy to develop
constructs such as entity classes without writing all the
boilerplate, which makes the classes much more concise and
less error-prone. I’ve developed entire Java EE applications
without any getters or setters in my entity classes, just by
annotating them with . I suggest you play around with it
and see what works best for you.

Use caution and roll back. As with the use of any library, there
are some caveats to keep in mind. This is especially true when
you are thinking about future maintenance or modifications to
the codebase. Lombok generates code for you, but that might
cause a problem when it comes to refactoring. It is difficult to
refactor code that does not exist until compile time, so be
cautious with refactoring code that uses Lombok. You also need
to think about readability. Lombok annotations might make
troubleshooting a mystery for someone who is not familiar with
the library—and even for those who are—if something such as

 is hiding an exception.

Fortunately, Lombok makes it easy to roll back if you need to.
The delombok utility can be applied to your code to convert code

@Getter(lazy=true)@Getter(lazy=true)

NavigatorNavigator

@Data@Data

@SneakyThrows@SneakyThrows

https://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html
https://projectlombok.org/features/delombok

Josh Juneau
Josh Juneau (@javajuneau) works as an
application developer, system analyst, and
database administrator. He primarily
develops using Java and other JVM
languages. He is a frequent contributor to
Oracle Technology Network and Java
Magazine and has written several books for
Apress about Java and Java EE. Juneau
was a JCP Expert Group member for JSR
372 and JSR 378. He is a member of the
NetBeans Dream Team, a Java Champion,
leader for the CJUG OSS Initiative, and a
regular voice on the JavaPubHouse Off
Heap podcast.

Share this Page

that uses Lombok back to vanilla Java. This utility can be used
via Ant or the command line.

Conclusion

The Lombok library was created to make Java an easier
language in which to code. It takes some of the most common
boilerplate headaches out of the developer’s task list. It can be
useful for making your code more concise, reducing the chance
for bugs, and speeding up development time. Try adding
Lombok to one of your applications and see how many lines of
code you can cut out.



Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/josh-juneau
https://blogs.oracle.com/javamagazine/josh-juneau
https://www.twitter.com/javajuneau
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

