
JAVA SE

Behind the scenes: How do
lambda expressions really work
in Java?
Look into the bytecode to see how
Java handles lambdas.
by Ben Evans

September 25, 2020

Download a PDF of this article

What does a lambda expression look like inside Java code and
inside the JVM? It is obviously some type of value, and Java
permits only two sorts of values: primitive types and object
references. Lambdas are obviously not primitive types, so a
lambda expression must therefore be some sort of expression
that returns an object reference.

Let’s look at an example:

Programmers who are familiar with inner classes might guess
that the lambda is really just syntactic sugar for an anonymous
implementation of  However, compiling the above
class generates a single file: . There is
no additional class file for the inner class.

public class LambdaExample {public class LambdaExample {  
    private static final String HELLO = "Hell    private static final String HELLO = "Hell
  
    public static void main(String[] args) th    public static void main(String[] args) th
        Runnable r = () -> System.out.println        Runnable r = () -> System.out.println
        Thread t = new Thread(r);        Thread t = new Thread(r);  
        t.start();        t.start();  
        t.join();        t.join();  
    }    }  
}}

Runnable.Runnable.

LambdaExample.classLambdaExample.class

Behind the scenes: How do
lambda expressions really work
in Java?

Call sites

Method handles

Bootstrapping

Decoding the lambda’s
bootstrap method

The lambda metafactories

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

 
Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/java-se-3
https://app.compendium.com/api/post_attachments/eb5c30e6-5e79-4f61-bae4-ceda33bc6792/view
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/


This means that lambdas are not inner classes; rather, they must
be some other mechanism. In fact, decompiling the bytecode via

 reveals two things. First is the fact that the
lambda body has been compiled into a private static method that
appears in the main class:

You might guess that the signature of the private body method
matches that of the lambda, and indeed this is the case. A
lambda such as this

will produce a body method such as this, which takes a string
and returns an integer, matching the signature of the interface
method

The second thing to notice about the bytecode is the form of the
main method:

Notice that the bytecode begins with an  call.
This opcode was added to Java with version 7 (and it is the only
opcode ever added to JVM bytecode). I discussed method

javap -c -pjavap -c -p

private static void lambda$main$0();private static void lambda$main$0();  
    Code:    Code:  
       0: getstatic     #7                  /       0: getstatic     #7                  /
       3: ldc           #9                  /       3: ldc           #9                  /
       5: invokevirtual #10                 /       5: invokevirtual #10                 /
       8: return       8: return

public class StringFunction {public class StringFunction {  
    public static final Function<String, Inte    public static final Function<String, Inte
}}

private static java.lang.Integer lambda$statiprivate static java.lang.Integer lambda$stati
    Code:    Code:  
       0: aload_0       0: aload_0  
       1: invokevirtual #2                  /       1: invokevirtual #2                  /
       4: invokestatic  #3                  /       4: invokestatic  #3                  /
       7: areturn       7: areturn

public static void main(java.lang.String[]) tpublic static void main(java.lang.String[]) t
    Code:    Code:  
       0: invokedynamic #2,  0              /       0: invokedynamic #2,  0              /
       5: astore_1       5: astore_1  
       6: new           #3                  /       6: new           #3                  /
       9: dup       9: dup  
      10: aload_1      10: aload_1  
      11: invokespecial #4                  /      11: invokespecial #4                  /
      14: astore_2      14: astore_2  
      15: aload_2      15: aload_2  
      16: invokevirtual #5                  /      16: invokevirtual #5                  /
      19: aload_2      19: aload_2  
      20: invokevirtual #6                  /      20: invokevirtual #6                  /
      23: return      23: return

invokedynamicinvokedynamic



invocation in “Real-world bytecode Handling with ASM” and in
“Understanding Java method invocation with invokedynamic”
which you can read as companions to this article.

The most straightforward way to understand the 
 call in this code is to think of it as a call to an

unusual form of the factory method. The method call returns an
instance of some type that implements . The exact
type is not specified in the bytecode and it fundamentally does
not matter.

The actual type does not exist at compile time and will be
created on demand at runtime. To better explain this, I’ll discuss
three mechanisms that work together to produce this capability:
call sites, method handles, and bootstrapping.

Call sites

A location in the bytecode where a method invocation instruction
occurs is known as a call site.

Java bytecode has traditionally had four opcodes that handle
different cases of method invocation: static methods, “normal”
invocation (a virtual call that may involve method overloading),
interface lookup, and “special” invocation (for cases where
overload resolution is not required, such as superclass calls and
private methods).

Dynamic invocation goes much further than that by offering a
mechanism through which the decision about which method is
actually called is made by the programmer, on a per-call site
basis.

Here,  call sites are represented as 
objects in the Java heap. This isn’t strange: Java has been doing
similar things with the Reflection API since Java 1.1 with types
such as  and, for that matter, . Java has many
dynamic behaviors at runtime, so there should be nothing
surprising about the idea that Java is now modeling call sites as
well as other runtime type information.

When the  instruction is reached, the JVM
locates the corresponding call site object (or it creates one, if this
call site has never been reached before). The call site object
contains a method handle, which is an object that represents the
method that I actually want to invoke.

The call site object is a necessary level of indirection, allowing
the associated invocation target (that is, the method handle) to
change over time.

There are three available subclasses of  (which is
abstract): , , and 

. The base class has only package-private
constructors, while the three subtypes have public constructors.
This means that  cannot be directly subclassed by

invokedynamicinvokedynamic

RunnableRunnable

invokedynamicinvokedynamic CallSiteCallSite

MethodMethod ClassClass

invokedynamicinvokedynamic

CallSiteCallSite

ConstantCallSiteConstantCallSite MutableCallSiteMutableCallSite

VolatileCallSiteVolatileCallSite

CallSiteCallSite

https://blogs.oracle.com/javamagazine/real-world-bytecode-handling-with-asm
https://www.oracle.com/a/ocom/docs/corporate/java-magazine-nov-dec-2017.pdf#page=67


user code, but it is possible to subclass the subtypes. For
example, the JRuby language uses  as part of
its implementation and subclasses .

Note: Some  call sites are effectively just lazily
computed, and the method they target will never change after
they have been executed the first time. This is a very common
use case for , and this includes lambda
expressions.

This means that a nonconstant call site can have many different
method handles as its target over the lifetime of a program.

Method handles

Reflection is a powerful technique for doing runtime tricks, but it
has a number of design flaws (hindsight is 20/20, of course), and
it is definitely showing its age now. One key problem with
reflection is performance, especially since reflective calls are
difficult for the just-in-time (JIT) compiler to inline.

This is bad, because inlining is very important to JIT compilation,
not the least of which is because it’s usually the first optimization
applied and it opens the door to other techniques (such as
escape analysis and dead code elimination).

A second problem is that reflective calls are linked every time
the call site of  is encountered. That means,
for example, that security access checks are performed. This is
very wasteful because the check will typically either succeed or
fail on the first call, and if it succeeds, it will continue to do so for
the life of the program. Yet, reflection does this linking over and
over again. Thus, reflection incurs a lot of unnecessary cost by
relinking and wasting CPU time.

To solve these problems (and others), Java 7 introduced a new
API, , which is often casually called
method handles due to the name of the main class it introduced.

A method handle (MH) is Java’s version of a type-safe function
pointer. It’s a way of referring to a method that the code might
want to call, similar to a  object from Java reflection. The
MH has an  method that actually executes the
underlying method, in just the same way as reflection.

At one level, MHs are really just a more efficient reflection
mechanism that’s closer to the metal; anything represented by
an object from the Reflection API can be converted to an
equivalent MH. For example, a reflective  object can be
converted to an MH using . The MHs
that are created are usually a more efficient way to access the
underlying methods.

MHs can be adapted, via helper methods in the 
 class, in a number of ways such as by

invokedynamicinvokedynamic

MutableCallSiteMutableCallSite

invokedynamicinvokedynamic

ConstantCallSiteConstantCallSite

Method.invoke()Method.invoke()

java.lang.invokejava.lang.invoke

MethodMethod

invoke()invoke()

MethodMethod

Lookup.unreflect()Lookup.unreflect()

MethodHandlesMethodHandles



composition and the partial binding of method arguments
(currying).

Normally, method linkage requires exact matching of type
descriptors. However, the  method on an MH has a
special polymorphic signature that allows linkage to proceed
regardless of the signature of the method being called.

At runtime, the signature at the  call site should look
like you are calling the referenced method directly, which avoids
type conversions and autoboxing costs that are typical with
reflected calls.

Because Java is a statically typed language, the question arises
as to how much type-safety can be preserved when such a
fundamentally dynamic mechanism is used. The MH API
addresses this by use of a type called , which is an
immutable representation of the arguments that a method takes:
the signature of the method.

The internal implementation of MHs was changed during the
lifetime of Java 8. The new implementation is called lambda
forms, and it provided a dramatic performance improvement with
MHs now being better than reflection for many use cases.

Bootstrapping

The first time each specific  call site is
encountered in the bytecode instruction stream, the JVM doesn’t
know which method it targets. In fact, there is no call site object
associated with the instruction.

The call site needs to be bootstrapped, and the JVM achieves
this by running a bootstrap method (BSM) to generate and return
a call site object.

Each  call site has a BSM associated with it,
which is stored in a separate area of the class file. These
methods allow user code to programmatically determine linkage
at runtime.

Decompiling an  call, such as that from my
original example of a , shows that it has this form:

And in the class file’s constant pool, notice that entry #2 is a
constant of type . The relevant
parts of the constant pool are

invoke()invoke()

invoke()invoke()

MethodTypeMethodType

invokedynamicinvokedynamic

invokedynamicinvokedynamic

invokedynamicinvokedynamic

RunnableRunnable

0: invokedynamic #2,  00: invokedynamic #2,  0

CONSTANT_InvokeDynamicCONSTANT_InvokeDynamic

#2 = InvokeDynamic      #0:#31#2 = InvokeDynamic      #0:#31  
   ...   ...  
  #31 = NameAndType        #46:#47        //   #31 = NameAndType        #46:#47        // 



The presence of 0 in the constant is a clue. Constant pool
entries are numbered from 1, so the 0 reminds you that the
actual BSM is located in another part of the class file.

For lambdas, the  entry takes on a special form.
The name is arbitrary, but the type signature contains some
useful information.

The return type corresponds to the return type of the 
 factory; it is the target type of the lambda

expression. Also, the argument list consists of the types of
elements that are being captured by the lambda. In the case of a
stateless lambda, the return type will always be empty. Only a
Java closure will have arguments present.

A BSM takes at least three arguments and returns a .
The standard arguments are of these types:

Following these arguments are any additional arguments that
are needed by the BSM. These are referred to as additional
static arguments in the documentation.

The general case of BSMs allows an extremely flexible
mechanism, and non-Java language implementers use this.
However, the Java language does not provide a language-level
construct for producing arbitrary  call sites.

For lambda expressions, the BSM takes a special form and to
fully understand how the mechanism works, I will examine it
more closely.

Decoding the lambda’s bootstrap method

Use the  argument to  to see the bootstrap methods.
This is necessary because the bootstrap methods live in a
special part of the class file and make references back into the
main constant pool. For this simple  example, there is
a single bootstrap method in that section:

  #46 = Utf8               run  #46 = Utf8               run  
  #47 = Utf8               ()Ljava/lang/Runna  #47 = Utf8               ()Ljava/lang/Runna

NameAndTypeNameAndType

invokedynamicinvokedynamic

CallSiteCallSite

: A lookup object on the class in
which the call site occurs

MethodHandles.LookupMethodHandles.Lookup

: The name mentioned in the StringString NameAndTypeNameAndType

: The resolved type descriptor of the MethodTypeMethodType
NameAndTypeNameAndType

invokedynamicinvokedynamic

-v-v javapjavap

RunnableRunnable

BootstrapMethods:BootstrapMethods:  
  0: #28 REF_invokeStatic java/lang/invoke/La  0: #28 REF_invokeStatic java/lang/invoke/La
        (Ljava/lang/invoke/MethodHandles$Look        (Ljava/lang/invoke/MethodHandles$Look
         Ljava/lang/invoke/MethodType;Ljava/l         Ljava/lang/invoke/MethodType;Ljava/l
         Ljava/lang/invoke/MethodHandle;Ljava         Ljava/lang/invoke/MethodHandle;Ljava
    Method arguments:    Method arguments:  
      #29 ()V      #29 ()V  



That is a bit hard to read, so let’s decode it.

The bootstrap method for this call site is entry #28 in the
constant pool. This is an entry of type  (a
constant pool type that was added to the standard in Java 7).
Now let’s compare it to the case of the string function example:

The method handle that will be used as the BSM is the same
static method .

The part that has changed is the method arguments. These are
the additional static arguments for lambda expressions, and
there are three of them. They represent the lambda’s signature
and the method handle for the actual final invocation target of
the lambda: the lambda body. The third static argument is the
erased form of the signature.

Let’s follow the code into  and see how the
platform uses metafactories to dynamically spin the classes that
actually implement the target types for the lambda expressions.

The lambda metafactories

The BSM makes a call to this static method, which ultimately
returns a call site object. When the  instruction
is executed, the method handle contained in the call site will
return an instance of a class that implements the lambda’s target
type.

The source code for the metafactory method is relatively simple:

      #30 REF_invokeStatic LambdaExample.lamb      #30 REF_invokeStatic LambdaExample.lamb
      #29 ()V      #29 ()V

MethodHandleMethodHandle

0: #27 REF_invokeStatic java/lang/invoke/Lamb0: #27 REF_invokeStatic java/lang/invoke/Lamb
        (Ljava/lang/invoke/MethodHandles$Look        (Ljava/lang/invoke/MethodHandles$Look
         Ljava/lang/invoke/MethodType;Ljava/l         Ljava/lang/invoke/MethodType;Ljava/l
         Ljava/lang/invoke/MethodHandle;Ljava         Ljava/lang/invoke/MethodHandle;Ljava
    Method arguments:    Method arguments:  
      #28 (Ljava/lang/Object;)Ljava/lang/Obje      #28 (Ljava/lang/Object;)Ljava/lang/Obje
      #29 REF_invokeStatic StringFunction.lam      #29 REF_invokeStatic StringFunction.lam
      #30 (Ljava/lang/String;)Ljava/lang/Inte      #30 (Ljava/lang/String;)Ljava/lang/Inte

LambdaMetafactory.metafactory( ... )LambdaMetafactory.metafactory( ... )

java.lang.invokejava.lang.invoke

invokedynamicinvokedynamic

public static CallSite metafactory(MethodHandpublic static CallSite metafactory(MethodHand
                                       String                                       String
                                       Method                                       Method
                                       Method                                       Method
                                       Method                                       Method
                                       Method                                       Method
            throws LambdaConversionException             throws LambdaConversionException 
        AbstractValidatingLambdaMetafactory m        AbstractValidatingLambdaMetafactory m
        mf = new InnerClassLambdaMetafactory(        mf = new InnerClassLambdaMetafactory(
                                                                                          
                                                                                          
                                                                                          
        mf.validateMetafactoryArgs();        mf.validateMetafactoryArgs();  



The lookup object corresponds to the context where the 
 instruction lives. In this case, that is the same

class where the lambda was defined, so the lookup context will
have the correct permissions to access the private method that
the lambda body was compiled into.

The invoked name and type are provided by the VM and are
implementation details. The final three parameters are the
additional static arguments from the BSM.

In the current implementation, the metafactory delegates to code
that uses an internal, shaded copy of the ASM bytecode libraries
to spin up an inner class that implements the target type.

If the lambda does not capture any parameters from its
enclosing scope, the resulting object is stateless, so the
implementation optimizes by precomputing a single instance—
effectively making the lambda’s implementation class a
singleton:

This is one reason why the documentation strongly discourages
Java programmers from relying upon any form of identity
semantics for lambdas.

Conclusion

This article explored the fine-grained details of exactly how the
JVM implements support for lambda expressions. This is one of
the more complex platform features you’ll encounter, because it
is deep into language implementer territory.

Along the way, I’ve discussed  and the method
handles API. These are two key techniques that are major parts
of the modern JVM platform. Both of these mechanisms are
seeing increased use across the ecosystem; for example, 

 has been used to implement a new form of
string concatenation in Java 9 and above.

        return mf.buildCallSite();        return mf.buildCallSite();  
}}

invokedynamicinvokedynamic

jshell> Function<String, Integer> makeFn() {jshell> Function<String, Integer> makeFn() {  
   ...>   return s -> s.length();   ...>   return s -> s.length();  
   ...> }   ...> }  
|  created method makeFn()|  created method makeFn()  
  
jshell> var f1 = makeFn();jshell> var f1 = makeFn();  
f1 ==> $Lambda$27/0x0000000800b8f440@533ddbaf1 ==> $Lambda$27/0x0000000800b8f440@533ddba  
  
jshell> var f2 = makeFn();jshell> var f2 = makeFn();  
f2 ==> $Lambda$27/0x0000000800b8f440@533ddbaf2 ==> $Lambda$27/0x0000000800b8f440@533ddba  
  
jshell> var f3 = makeFn();jshell> var f3 = makeFn();  
f3 ==> $Lambda$27/0x0000000800b8f440@533ddbaf3 ==> $Lambda$27/0x0000000800b8f440@533ddba

invokedynamicinvokedynamic

invokedynamicinvokedynamic

https://asm.ow2.io/


Ben Evans
Ben Evans (@kittylyst) is a Java Champion
and Principal Engineer at New Relic. He
has written five books on programming,
including Optimizing Java (O'Reilly).
Previously he was a founder of jClarity
(acquired by Microsoft) and a member of
the Java SE/EE Executive Committee.

Share this Page

   

Understanding these features gives you key insight into the
innermost workings of the platform and the modern frameworks
upon which Java applications rely.

Dig deeper

Java 8: Lambdas, Part 1

Java 8: Lambdas, Part 2

Real-world bytecode handling with ASM

The ASM bytecode framework

Loop unrolling

The evolving nature of Java interfaces

OpenJDK Project Lambda

Chapter 6. The Java Virtual Machine instruction set


Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/ben-evans
https://blogs.oracle.com/javamagazine/ben-evans
https://www.twitter.com/kittylyst
https://www.oracle.com/technical-resources/articles/java/architect-lambdas-part1.html
https://www.oracle.com/technical-resources/articles/java/architect-lambdas-part2.html
https://blogs.oracle.com/javamagazine/real-world-bytecode-handling-with-asm
https://asm.ow2.io/
https://blogs.oracle.com/javamagazine/loop-unrolling
https://blogs.oracle.com/javamagazine/the-evolving-nature-of-java-interfaces
https://openjdk.java.net/projects/lambda/
https://docs.oracle.com/javase/specs/jvms/se15/html/jvms-6.html
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

