
CODING

How to solve the classic Traveling
Salesman Problem in Java
Sharpen your Java coding skills by
exploring a well-known established
computer science problem.

by David Kopec

July 23, 2021

[This article is excerpted from
Classic Computer Science
Problems in Java, Chapter 9, and
is published with the kind
permission of Manning
Publications. —Ed.]

The Traveling Salesman Problem
(TSP) is one of the most classic
and talked-about problems in all
of computing:

A salesman must visit all the
cities on a map exactly once,
returning to the start city at
the end of the journey. There is a direct connection from
every city to every other city, and the salesman may visit the
cities in any order. What is the shortest path for the
salesman?

The problem can be thought of as a graph problem, with the cities
being the vertices and the connections between them being the edges.
Your first instinct might be to use a minimum spanning tree algorithm.
Unfortunately, the solution to the Traveling Salesman Problem is not so
simple. The minimum spanning tree is the way to connect all the cities
with the least amount of road, but it does not provide the shortest path
for visiting all of them exactly once.

Although the problem, as posed, appears simple, there is no algorithm
that can solve it quickly for an arbitrary number of cities. What do I
mean by “quickly”? I mean that the problem is what is known as NP
hard. An NP-hard (nondeterministic polynomial hard) problem is a
problem for which no polynomial time algorithm is known. (The time it
takes is a polynomial function of the size of the input.)

How to solve the classic Traveling
Salesman Problem in Java

The naive approach

Taking it to the next level

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/coding-2
https://www.manning.com/books/classic-computer-science-problems-in-java
https://www.hackerearth.com/practice/algorithms/graphs/minimum-spanning-tree/tutorial/
https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_np_hard_complete_classes.htm
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

As the number of cities that the salesman needs to visit increases, the
difficulty of solving the problem grows exceptionally quickly. It is much
harder to solve the problem for 20 cities than 10. It is impossible (to the
best of current knowledge), in a reasonable amount of time, to solve the
problem perfectly (optimally) for millions of cities.

The naive approach

The naive approach to the problem is simply to try every possible
combination of cities. This approach to the TSP is O(n!). Why this is the
case is discussed in the “Taking it to the next level” section, but please
don’t jump ahead, because the implementation of a naive solution to
the problem will make its complexity obvious. Also, attempting the naive
approach will illustrate the difficulty of the problem and this approach’s
unsuitability for brute-force attempts at larger scales.

Our sample data. In our version of the TSP, the salesman is interested
in visiting five of the major cities in Vermont. We will not specify a
starting (and therefore ending) city. Figure 1 illustrates the five cities
and the driving distances between them. Note that there is a distance
listed for the route between every pair of cities.

Figure 1. Five cities in Vermont and the driving distances between them

Perhaps you have seen driving distances in table form before. In a
driving-distance table, one can easily look up the distance between any
two cities. Table 1 lists the driving distances for the five cities in the
problem.

Table 1. Driving distances between cities in Vermont

We will need to codify both the cities and the distances between them
for our problem. To make the distances between cities easy to look up,
we will use a map of maps, with the outer set of keys representing the
first of a pair and the inner set of keys representing the second. This
will be the type , and it will
allow lookups like

, which
should return 67.

We will use the map when we solve the problem for
Vermont, but first, let’s do some setup. Our class holds the map and
has a utility method we will use later for doing a swap of the items at
two locations within an array.

Let’s start off with the top part of the listing for TSP.java, as follows (See
my GitHub repository for all the code):

Finding all permutations. The naive approach we are using to solve
the TSP requires generating every possible permutation of the cities.
There are many permutation-generation algorithms; they are simple
enough to ideate that you could certainly come up with one on your
own.

One common approach is backtracking, such as is used to solve a
constraint-satisfaction problem. In constraint-satisfaction problem-
solving, backtracking is used after a partial solution is found that does
not satisfy the problem’s constraints. In such a case, you revert to an
earlier state and continue the search along a different path than that
which led to the incorrect partial solution.

To find all of the permutations of the items in an array (eventually, the
cities), we will also use backtracking. After we make a swap between
elements and go down a path of further permutations, we will backtrack

Map<String, Map<String, Integer>>Map<String, Map<String, Integer>>

vtDistances.get("Rutland").get("Burlington")vtDistances.get("Rutland").get("Burlington")

vtDistancesvtDistances

package chapter9;package chapter9;

import java.util.ArrayList;import java.util.ArrayList;

import java.util.Arrays;import java.util.Arrays;

import java.util.List;import java.util.List;

import java.util.Map;import java.util.Map;

public class TSP {public class TSP {

 private final Map<String, Map<String, Integer> private final Map<String, Map<String, Integer>

 public TSP(Map<String, Map<String, Integer>> d public TSP(Map<String, Map<String, Integer>> d
 this.distances = distances; this.distances = distances;

 } }

 public static <T> void swap(T[] array, int fir public static <T> void swap(T[] array, int fir
 T temp = array[first]; T temp = array[first];

 array[first] = array[second]; array[first] = array[second];

 array[second] = temp; array[second] = temp;

 } }

https://github.com/davecom/ClassicComputerScienceProblemsInJava

to the state before the swap was made so we can make a different
swap and go down a different path.

Here is more of TSP.java

This recursive function is labeled a “helper,” because it will be called by
another function that takes fewer arguments. The parameters of

 are the starting permutation we are
working with, the permutations generated so far, and the number of
remaining items to swap around.

A common pattern for recursive functions that need to keep multiple
items of state across calls is to have a separate outward-facing function
with fewer parameters that is easier to use. is
that simpler function.

More of TSP.java

 takes just a single argument: the array for which
the permutations should be generated. It calls

 to find those permutations. This saves
the user of from having to provide the
parameters’ permutations and n to .

The backtracking approach to finding all the permutations presented
here is fairly efficient. Finding each permutation requires just two swaps
within the array. However, it is possible to find all the permutations of an
array with just one swap per permutation. One efficient algorithm that
accomplishes that task is Heap’s algorithm. (This is not to be confused
with the heap data structure. Heap, in this case, is the name of the
inventor of the algorithm, B.R. Heap, who described it in 1963. Learn
more about that in Robert Sedgewick’s paper “Permutation Generation
Methods.”)

This difference in efficiency may be important for very large data sets—
which is not what we are dealing with here, of course.

private static <T> void allPermutationsHelper(T[] private static <T> void allPermutationsHelper(T[]
 // Base case - we found a new permutation, // Base case - we found a new permutation,
 if (n <= 0) { if (n <= 0) {

 permutations.add(permutation); permutations.add(permutation);

 return; return;

 } }

 // Recursive case - find more permutations // Recursive case - find more permutations
 T[] tempPermutation = Arrays.copyOf(permut T[] tempPermutation = Arrays.copyOf(permut
 for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {

 swap(tempPermutation, i, n - 1); // mo swap(tempPermutation, i, n - 1); // mo
 // move everything else around, holdin // move everything else around, holdin
 allPermutationsHelper(tempPermutation, allPermutationsHelper(tempPermutation,
 swap(tempPermutation, i, n - 1); // ba swap(tempPermutation, i, n - 1); // ba
 } }

 } }

allPermutationsHelper()allPermutationsHelper()

allPermutations()allPermutations()

private static <T> List<T[]> permutations(T[] origprivate static <T> List<T[]> permutations(T[] orig
 List<T[]> permutations = new ArrayList<>() List<T[]> permutations = new ArrayList<>()
 allPermutationsHelper(original, permutatio allPermutationsHelper(original, permutatio
 return permutations; return permutations;

 } }

allPermutations()allPermutations()

allPermutationsHelper()allPermutationsHelper()

allPermutations()allPermutations()

allPermutationsHelper()allPermutationsHelper()

https://www.cs.princeton.edu/~rs/talks/perms.pdf

Brute-force search. We can now generate all the permutations of the
city list, but this is not quite the same as a TSP path. Recall that in the
TSP, the salesman must return, at the end, to the same city that he
started in. We can easily add the distance from the last city the
salesman visited to the first city visited when we calculate which path is
the shortest, and we will do that shortly.

We are now ready to try testing the paths we have permuted. A brute-
force search approach painstakingly looks at every path in a list of
paths and uses the distance between the two cities in the lookup table
(distances) to calculate each path’s total distance. It prints both the
shortest path and that path’s total distance.

More from TSP.java

public int pathDistance(String[] path) {public int pathDistance(String[] path) {

 String last = path[0]; String last = path[0];

 int distance = 0; int distance = 0;

 for (String next : Arrays.copyOfRange(path for (String next : Arrays.copyOfRange(path
 distance += distances.get(last).get(ne distance += distances.get(last).get(ne
 // distance to get back from last city // distance to get back from last city
 last = next; last = next;

 } }

 return distance; return distance;

 } }

 public String[] findShortestPath() { public String[] findShortestPath() {

 String[] cities = distances.keySet().toArr String[] cities = distances.keySet().toArr
 List<String[]> paths = permutations(cities List<String[]> paths = permutations(cities
 String[] shortestPath = null; String[] shortestPath = null;

 int minDistance = Integer.MAX_VALUE; // ar int minDistance = Integer.MAX_VALUE; // ar
 for (String[] path : paths) { for (String[] path : paths) {

 int distance = pathDistance(path); int distance = pathDistance(path);

 // distance from last to first must be // distance from last to first must be
 distance += distances.get(path[path.le distance += distances.get(path[path.le
 if (distance < minDistance) { if (distance < minDistance) {

 minDistance = distance; minDistance = distance;

 shortestPath = path; shortestPath = path;

 } }

 } }

 // add first city on to end and return // add first city on to end and return

 shortestPath = Arrays.copyOf(shortestPath, shortestPath = Arrays.copyOf(shortestPath,
 shortestPath[shortestPath.length - 1] = sh shortestPath[shortestPath.length - 1] = sh
 return shortestPath; return shortestPath;

 } }

 public static void main(String[] args) { public static void main(String[] args) {

 Map<String, Map<String, Integer>> vtDistan Map<String, Map<String, Integer>> vtDistan
 "Rutland", Map.of("Rutland", Map.of(

 "Burlington", 67, "Burlington", 67,

 "White River Junction", 46 "White River Junction", 46
 "Bennington", 55, "Bennington", 55,

 "Brattleboro", 75), "Brattleboro", 75),

 "Burlington", Map.of("Burlington", Map.of(

 "Rutland", 67, "Rutland", 67,

 "White River Junction", 91 "White River Junction", 91
 "Bennington", 122, "Bennington", 122,

 "Brattleboro", 153), "Brattleboro", 153),

 "White River Junction", Map.of("White River Junction", Map.of(

 "Rutland", 46, "Rutland", 46,

 "Burlington", 91, "Burlington", 91,

 "Bennington", 98, "Bennington", 98,

 "Brattleboro", 65), "Brattleboro", 65),

 "Bennington", Map.of("Bennington", Map.of(

 "Rutland", 55, "Rutland", 55,

 "Burlington", 122, "Burlington", 122,

 "White River Junction", 98 "White River Junction", 98

We finally can brute-force the cities of Vermont, finding the shortest
path to reach all five. The output should look something like the
following, and the best path is illustrated in Figure 2.

The shortest path is [White River Junction, Burlington, Rutland,
Bennington, Brattleboro, White River Junction] 318 miles.

Figure 2. The shortest path for the salesman to visit all five cities in Vermont is

illustrated.

Taking it to the next level

There is no easy answer to the TSP. Our naive approach quickly
becomes infeasible. The number of permutations generated is n
factorial (n!), where n is the number of cities in the problem. If we were

 "Brattleboro", 40), "Brattleboro", 40),

 "Brattleboro", Map.of("Brattleboro", Map.of(

 "Rutland", 75, "Rutland", 75,

 "Burlington", 153, "Burlington", 153,

 "White River Junction", 65 "White River Junction", 65
 "Bennington", 40)); "Bennington", 40));

 TSP tsp = new TSP(vtDistances); TSP tsp = new TSP(vtDistances);

 String[] shortestPath = tsp.findShortestPa String[] shortestPath = tsp.findShortestPa
 int distance = tsp.pathDistance(shortestPa int distance = tsp.pathDistance(shortestPa
 System.out.println("The shortest path is " System.out.println("The shortest path is "
 distance + " miles."); distance + " miles.");

 } }
}}

David Kopec
David Kopec (@davekopec) is assistant professor
of Computer Science and Innovation at Champlain
College in Burlington, Vermont. He is the author of
Classic Computer Science Problems in Java
(Manning, 2020) and Classic Computer Science
Problems in Python (Manning, 2019), among
others. He is also a software developer and
podcaster.

Share this Page

to include just one more city (six instead of five), the number of
evaluated paths would grow by a factor of six. Then it would be seven
times harder to solve the problem for just one more city after that. This
is not a scalable approach!

In the real world, the naive approach to the TSP is seldom used. Most
algorithms for instances of the problem with many cities are
approximations. They try to solve the problem for a near-optimal
solution. The near-optimal solution may be within a small known band
of the perfect solution. (For example, perhaps they will be no more than
5% less efficient.)

The TSP is an everyday occurrence for shipping and distribution
companies like UPS and FedEx. Package delivery companies want
their drivers to travel the shortest routes possible. Not only does this
make the driver’s job more pleasant, but it also saves fuel and
maintenance costs. We all travel for work or for pleasure, and finding
optimal routes when visiting many destinations can save resources.

But the TSP is not just for routing travel; it comes up in almost any
routing scenario that requires singular visits to nodes. Although a
minimum spanning tree may minimize the amount of wire needed to
connect a neighborhood, it does not tell us the optimal amount of wire if
every house must be forward-connected to just one other house as part
of a giant circuit that returns to its origination. The TSP does.

Permutation and combination generation techniques, like the ones used
in the naive approach to the TSP, are useful for testing all sorts of brute-
force algorithms. For instance, if you were trying to crack a short
password and you knew its length, you could generate every possible
permutation of the characters that could potentially be in the password.
Practitioners of such large-scale permutation-generation tasks would be
wise to use an especially efficient permutation-generation algorithm
such as Heap’s algorithm.

Dig deeper

Permutations by interchanges, by B.R. Heap, The Computer
Journal, November 1963



Optimizing grocery delivery routes using Oracle APEX, Oracle
Autonomous Database, and Google Maps APIs



NP-Completeness



https://blogs.oracle.com/javamagazine/david-kopec
https://blogs.oracle.com/javamagazine/david-kopec
https://twitter.com/davekopec
https://academic.oup.com/comjnl/article/6/3/293/360213
https://asktom.oracle.com/pls/apex/asktom.search?oh=8161
https://www.geeksforgeeks.org/np-completeness-set-1/



Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

