ORACLE Q =

Menu

Topics v Archives Downloads v Subscribe

Java

magazine

How to build applications with
the WebSocket API for Java
EE and Jakarta EE

How to build applications with
o the WebSocket API for Java EE
e and Jakarta EE

Creating a chat application

Digging into the specification

WebSocket is a two-way
communication protocol that lets
clients send and receive messages
over a single connection to a server
endpoint.

using WebSocket

The client endpoint
WebSocket customization
Conclusion

Dig deeper
by Josh Juneau

January 29, 2021

WebSocket is a two-way communication protocol that lets clients
send and receive messages over a single connection to a server
endpoint. The Jakarta WebSocket API, part of the Jakarta EE
platform, can be used to develop WebSocket server endpoints
as well as WebSocket clients. This article provides a brief
overview of the Jakarta WebSocket specification, and I'll show
how to construct an application using WebSockets.

I'll cover the Jakarta WebSocket API as it stands as part of the
Jakarta EE 9 platform release. That said, the examples in this
article will work with Jakarta EE 8 or Java EE 7 or Java EE 8
applications. The main difference is that the namespace for
Jakarta EE 9 is jakarta. *; in earlier releases, it was javax. *
. Therefore, if you are using a previous release, change the
namespace to javax. *.

WebSocket is a vendor-independent standard. If you’re curious
about the WebSocket protocol, it's covered in depth in IETF RFC
6455. Many tutorials are published online. You can also read the
documentation for the WebSocket interface in JDK 15.

To communicate with WebSocket, you must configure a server
endpoint. The simplest endpoint is a standard Java class

that either is annotated with @ServerEndpoint or extends the
jakarta.websocket.Endpoint abstract class.

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/jakarta-ee
https://jakarta.ee/specifications/websocket/
https://jakarta.ee/
https://jakarta.ee/specifications/websocket/
https://tools.ietf.org/html/rfc6455
https://docs.oracle.com/en/java/javase/15/docs/api/java.net.http/java/net/http/WebSocket.html
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

An endpoint also contains a method that’s annotated with
@onMessage. The @serverEndpoint annotation accepts the
URI at which the WebSocket server will accept messages that
need to be sent. The URI can also be used to register clients as
recipients for WebSocket messages.

The following simple endpoint accepts a string-based message
at the endpoint URI /basicEndpoint and performs an activity
with that message once it has been received. A client can
connect to the server endpoint URI to open the connection,
which will remain open for sending and receiving messages for
the duration of the session.

@ServerEndpoint (value = "/basicEndpoint")
public class BasicEndpoint {
@oOnMessage

public void onMessage(Session session,
String mess
// perform an action

In the following sections, you'll see the wide variety of options
available for developing more-sophisticated WebSocket
solutions. However, the overall concept for generating a
WebSocket endpoint remains very much the same as the
previous example.

Digging into the specification

You can develop WebSocket endpoints using either an
annotation-based or programmatic approach. You can use the
@ServerEndpoint annotation to specify that a class is used as
a WebSocket server endpoint. The alternative to using
@serverEndpoint is to extend the
jakarta.websocket.Endpoint abstract class. The
examples for this article use the annotation approach. Similarly,
you can use the @ClientEndpoint annotation to specify that a
standard Java class is used to accept WebSocket messages.
@ServerEndpoint and @ClientEndpoint can specify the
following attributes:

* value: Specifies a URI path at which the server endpoint
will be deployed.

* decoders: Specifies a list of classes that can be used to
decode incoming messages to the WebSocket endpoint.
Classes implement the Decoder interface.

* encoders: Specifies a list of classes that can be used to
encode outgoing messages from the WebSocket endpoint.
Classes implement the Encoder interface.

* subprotocols: Specifies a string-based list of supported
subprotocols.

* configurator: Lists a custom implementation of
ServerEndpointConfiguration.Configurator

The specification defines a number of annotations that can be
placed on method declarations of a WebSocket endpoint class.
Each of the annotations can be used only once per class, and
they are used to decorate methods which contain
implementations that are to be invoked when the corresponding
WebSocket events occur. The method annotations are as
follows:

* @onopen: When it is specified on a method, it will be
invoked when a WebSocket connection is established. The
method can optionally specify Session as the first
parameter and EndpointConfig as a second parameter.

* @onMessage: When it is specified on a method, it will be
invoked when a message is received. The method can
optionally specify Session as the first parameter and
String (message) as a second parameter.

® @onClose: When it is specified on a method, it will be
invoked when a WebSocket connection is closed. The
method can optionally specify Session as the first
parameter and CloseReason as a second parameter.

* @onError: When it is specified on a method, it will be
invoked when an Exception is being thrown by any
method annotated with @OonOpen, @OnMessage, or
@onClose. The method can optionally specify Session
as the first parameter along with Throwable parameters.

Configuring a WebSocket project

To get started with Jakarta WebSocket, you must either add the
websocket-api dependency to a project or add the
jakarta-ee dependency to make use of the entire platform.
Both the Jakarta EE full profile and the web profile contain the
Jakarta WebSocket dependency.

<dependency>
<groupId>jakarta.platform</groupI
<artifactId>jakarta.jakartaee-api
<version>${jakartaee}</version>
</dependency>

For projects that will contain an @ClientEndpoint, you must
add an implementation as a dependency. In this case, | add the
Tyrus client implementation by adding the following dependency.
(Project Tyrus, from Oracle, is a JSR 356 Java API for
WebSocket reference implementation.)

<dependency>
<groupId>org.glassfish.tyrus.bund
<artifactId>tyrus-standalone-clie
<version>2.0.0-M3</version>
</dependency>

https://tyrus-project.github.io/

Creating a chat application using WebSocket

Here’s an application that uses WebSocket server endpoints
with a JavaScript WebSocket client to send and receive
messages. This particular example, called AcmeChat, uses
Maven, but another build system such as Gradle would work just
as well. This example will be deployed to Payara 5.202 running
on Jakarta EE 9.

To follow along, you can clone the source code from GitHub.

The WebSocket endpoint. To begin, create a Maven web
application and add the Jakarta EE 9 API dependency, along
with any others that may be used, as shown in Listing 1. In this
situation, you could also use the Jakarta EE Web Profile to make
the application lighter.

Listing 1. Adding the Jakarta EE 9 API dependency

<project xmlns="http://maven.apache.org/POM/4
xsi:schemaLocation="http://maven.apa

<modelVersion>4.0.0</modelVersion>
<groupId>com.employeeevent</groupIld>
<artifactId>AcmeChat</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>war</packaging>
<name>AcmeChat-1.0-SNAPSHOT</name>

<properties>
<maven.compiler.source>1.8</maven.com
<maven.compiler.target>1.8</maven.com
<endorsed.dir>${project.build.directo
<project.build.sourceEncoding>UTF-8</
<failOnMissingWebXml>false</failOnMis
<jakartaee>9.0.0-RC3</jakartaee>

</properties>

<dependencies>
<dependency>
<groupId>jakarta.platform</groupI
<artifactId>jakarta.jakartaee-api
<version>${jakartaee}</version>
</dependency>
<dependency>
<groupld>org.primefaces</groupId>
<artifactId>primefaces</artifactI
<version>8.0</version>
</dependency>
<dependency>
<groupId>org.glassfish.tyrus.bund
<artifactId>tyrus-standalone-clie
<version>2.0.0-M3</version>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plu
<artifactId>maven-compiler-pl
<version>3.1</version>

https://github.com/juneau001/AcmeChat

<configuration>
<source>1.8</source>
<target>1.8</target>
<compilerArguments>
<endorseddirs>${endor
</compilerArguments>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plu
<artifactId>maven-war-plugin<
<version>2.3</version>
<configuration>
<failOnMissingWebXml>fals
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plu
<artifactId>maven-dependency-
<version>2.6</version>
<executions>
<execution>
<phase>validate</phas
<goals>
<goal>copy</goal>
</goals>
<configuration>
<outputDirectory>
<silent>true</sil
<artifactItems>
<artifactItem
<groupId>
<artifact
<version>
<type>pom
</artifactIte
</artifactItems>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

Next, create the WebSocket server endpoint class named
com.employeeevent.acmechat.ChatEndpoint. The
source code for this class is shown in Listing 2. Annotate the
class with @serverEndpoint and specify a URI path of
"/chatEndpoint/{username}" for the value attribute. Note
the path parameter that is enclosed in curly braces at the end of
the URI. This allows the endpoint to accept a parameter. In this
case, | will be sending a message that's composed of a Java
object. Therefore, | need to use an encoder and decoder to
translate the message from the client to the server. | can specify
an encoder and decoder via attributes of @ServerEndpoint.

Listing 2. Creating the WebSocket server endpoint class

package com.employeeevent.acmechat;

import
import
import
import
import
import
import
import
import
import
import
import
import
import

jakarta.inject.Inject;
java.io.IOException;
java.util.HashMap;

java.util.Map;

java.util.Set;
java.util.concurrent.CopyOnWriteArraysS
jakarta.websocket.EncodeException;
jakarta.websocket.OnClose;
jakarta.websocket.OnError;
jakarta.websocket.OnMessage;
jakarta.websocket.OnOpen;
jakarta.websocket.Session;
jakarta.websocket.server.PathParam;
jakarta.websocket.server.ServerEndpoin

@ServerEndpoint (value = "/chatEndpoint/{usern

encoders = {MessageEncoder.class},
decoders = {MessageDecoder.class})

public class ChatEndpoint {

@Inject
ChatSessionController chatSessionControll

private static Session session;
private static Set<Session> chatters = ne

@OnOpen
public void messageOpen(Session session,

@PathParam("username") String use
EncodeException {
this.session = session;
Map<String,String> chatusers = chatSe
chatusers.put(session.getId(), userna
chatSessionController.setUsers(chatus
chatters.add(session);
Message message = new Message();
message.setUsername (username) ;
message.setMessage("Welcome "
broadcast (message);

+ usern

@OnMessage
public void messageReceiver(Session sessi

Message message) throws IOExcepti
Map<String,String> chatusers = chatSe
message.setUsername (chatusers.get(ses
broadcast (message);

@onClose
public void close(Session session) {

chatters.remove(session);

Message message = new Message();
Map<String,String> chatusers = chatSe
String chatuser = chatusers.get(sessi
message.setUsername (chatuser);
chatusers.remove (chatuser);
message.setMessage("Disconnected from

@OnError
public void onError(Session session, Thro

System.out.println("There has been an

private static void broadcast(Message mes
throws IOException, EncodeExcepti

chatters.forEach(session -> {
synchronized (session) {
try {
session.getBasicRemote().
sendObject (messag
} catch (IOException | Encode
e.printStackTrace();

}

Then, the endpoint class declares a field, identified as session,
that's used to hold the WebSocket Session and another
Set<Session>, identified as chatters, to hold each of the
connected chat user sessions. The class also injects an
@ApplicationScoped controller class entitled
ChatSessionController for storing users in a simple
HashMap, which is shown in Listing 3.

Listing 3. Endpoint class declaring fields to hold the WebSocket
session and chat user sessions

@Named
@ApplicationScoped
public class ChatSessionController implements

private Map<String, String> users = null;
public ChatSessionController(){}

@PostConstruct
public void init(){
users = new HashMap<>();

}

/**
* @return the users
*/
public Map<String, String> getUsers() {
return users;

}

/**
* @param for the users
*/
public void setUsers(Map<String, String>
this.users = users;

The chatEndpoint class declares four methods for handling
the WebSocket server events and a method named

broadcast () that's used to broadcast messages to each of the
connected clients, all of which are described below:

private static void broadcast(Message message
throws IOException, EncodeExcepti

chatters.forEach(session -> {
synchronized (session) {

try {
session.getBasicRemote().
sendObject (messag
} catch (IOException | Encode
e.printStackTrace();

* The broadcast () method is private and static, and it
accepts a Message object. The method simply traverses
the set of chat sessions, stored within the chatters field,
and within a synchronized block calls upon the
getBasicRemote().sendObject () method for each
session, sending the Message object.

* The messageOpen () method, annotated with @0nOpen,
is executed when the connection is opened. The method
accepts a Session and an @PathParam string, which
accepts the username substitute variable that's contained
within the @serverEndpoint wvalue attribute. Next, the
Session and username are both stored, and a Message
object is constructed using the username and message
text, and finally the message is broadcast via the
invocation of the broadcast () method.

* The messageReceiver () method, annotated with
@OnMessage, is executed when the WebSocket message
is received. The method accepts a Session and Message
; it uses the ChatSessionController to obtain the
username of the user associated with the session and
stores it in the Message object. The message is then
broadcast by passing the Message to the broadcast ()
method.

* The close () method, annotated with @OnClose, is
invoked when the connection is closed. This method
accepts a Session, which is then removed from the set
of chatters, as well as the chatusers Map. The
session is then used to obtain the corresponding username
from the ChatSessionController, and itis stored in a
new Message object, which is subsequently broadcast to
alert the other chatters that the user has disconnected.

* The onError () method, annotated with @OnError, is
invoked whenever one of the other annotated methods
throws an exception. This WebSocket endpoint can accept
messages from any WebSocket client, as long as the client
has an active session with the endpoint. To communicate
with the endpoint, the client will connect to the following
URI:

ws://<hostname>:
<port>/AcmeChat/chatEndpoint

The WebSocket client. You can write a client in a variety of
languages and still have the ability to communicate with the
WebSocket endpoint. In this example, | wrote the client in
JavaScript and invoked it via a Jakarta Server Faces front end.

Look at Listing 4, which contains the source code for the client.
Note that the body of the client is written in Jakarta Server Faces
and uses PrimeFaces components for the user interface. The
user interface contains an inputText field for the username,
an inputTextarea for the message, and two
commandButton widgets.

One of the commandButton widgets invokes a JavaScript
function named chatRelay (), which opens a connection to the
WebSocket. The other button invokes a JavaScript function
named send () to send the message from the inputTextarea
to the WebSocket endpoint.

Listing 4. Source code for the client

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:p="http://primefaces.org/ui"
xmlns:f="http://xmlns.jcp.org/jsf/core"

<h:head>
<script type="text/Jjavascript">
var ws;
function chatRelay()
{

var username = document.g

if ("WebSocket" in window
{
var json = {
'username': usern

nn

'message’:
}i
// Open WebSocket
ws = new WebSocket("w
ws.onopen = function
{
// Perform handli
}i
ws.onmessage = functi
{
var json = JSON.p
var currentValue
document.getEleme
currentVa
'
'
json.user
}i
ws.onclose = function

{

// websocket is c
alert("Connection

}i
} else
{
// The browser doesn'
alert("WebSocket NOT
}

}

function send() {
var username = document.getEL
var message = document.getEle
var json = {
'username': username.valu
'message’': message.value
}i
ws.send(JSON.stringify(json))
return false;
}
</script>
</h:head>
<h:body>
<h:form id="chatForm">
<h:outputLabel for="username" val
<p:inputText id="username" />

<p:commandButton id="wsRelay" typ
onclick="chatRel

<p:inputTextarea id="chatText" co

<p:commandButton id="sendMessage"
style="visibilit
onclick="send();

</h:form>

<div id="output"></div>
</h:body>

</html>

To open a connection to the endpoint, the chatRelay ()
function accepts the username from the client. Next, it checks
to ensure that the client’s browser will work with WebSockets
and, if it won’t, a message is presented on the client. If the
browser is compatible with WebSockets, a new JSON object is
created, passing the username and message text. The
WebSocket is then opened by passing the URI to the
WebSocket endpoint and appending the username to be passed
in as a path parameter, for example:

ws = new
WebSocket ("ws://localhost:8080/AcmeChat/chatEndpoint/"

+ username.value);

At this point, the WebSocket client is listening for responses
from the server, and there are callback functions that await the
server responses. The ws . onopen function, shown below, is

invoked when the connection is opened, invoking any handling
code that may be present:

ws.onopen = function ()

{
// Perform handling

}i

The ws . onmessage function, shown below, accepts an event
parameter. The event is the message that has been received
from the server endpoint. In this case, | used the JavaScript
JSON API to parse the data and populate the chat screen with
the incoming message text.

ws.onmessage = function (evt)
{

var json = JSON.parse(evt.data);

var currentValue = document.getEL

document.getElementById('output')
currentValue +
'
' +
json.username + ": " + Js

Y

The ws.onclose function, shown below, is invoked when the
WebSocket server connection is disconnected, performing any
processing code, as required. An example would be a case
where the network connection was lost or the WebSocket
endpoint was shut down. In such a case, the client could be
alerted that the connection was closed.

ws.onclose = function ()

{
// websocket is closed.
alert("Connection is closed...");

}i

Once the client session has been started and the WebSocket
client is listening, any messages received from the WebSocket
endpoint will be published via the ws . onmessage handler. The
JavaScript send () function, shown below, is then used to send
any messages that the user types into the inputTextarea to
the server endpoint for broadcasting to any listening clients. The
send () function creates a JSON object from the client
username and message and sends it to the endpoint using the
ws . send function, along with a little help from the
JSON.stringify utility to help parse the JSON.

function send() {
var username = document.getElementById('c
var message = document.getElementById('ch

var json = {
'username': username.value,
'message’': message.value
}i
ws.send(JSON.stringify(json));
return false;

Using this client configuration, two or more different clients can
connect to the same WebSocket endpoint and communicate
with each other in chat-room style.

The decoder and encoder. When the JavaScript client sends a
message to the endpoint, it is in JSON format. The WebSocket
endpoint accepts a plain old Java object named Message, which
contains the username and message. The decoder and encoder
classes transform the client-side messages to the server-side
message object, and vice versa. The Jakarta WebSocket API
makes it easy to develop decoders and encoders by simply
implementing the Decoder or Encoder interfaces, respectively.

Listing 5 shows the Decoder class implementation, which is
named MessageDecoder. This class decodes the client-side
message into a Message object for processing by the
WebSocket server. The interface uses generics to implement the
decoder for the accepted Java object. The class overrides four
methods: init (), willDecode(), decode(), and
destroy().

Much like the WebSocket endpoint, the decoder is very much
event-based. The init () method accepts an
EndpointConfig object, and it is invoked when the message
is sent from the client to the endpoint. The willDecode()
method, which accepts a string-based message, is invoked next
to return a boolean indicating whether the incoming message is
in the correct format. If the message is in the correct format, the
decode () method is invoked, again accepting a string-based
message in JSON format, and the message is decoded into the
Message object for processing via the endpoint. Lastly, the
destroy () method is invoked when the client session becomes
invalid.

Listing 5. The Decoder class implementation

package com.employeeevent.acmechat;

import java.io.StringReader;

import jakarta.json.Json;

import jakarta.json.JsonObject;

import jakarta.websocket.DecodeException;
import jakarta.websocket.Decoder;

import jakarta.websocket.EndpointConfig;

public class MessageDecoder implements Decode

@override
public Message decode(String jsonMessage) t

JsonObject jsonObject = Json

.createReader (new StringReader (jsonMe
Message message = new Message();
message.setUsername (jsonObject.getString(
message.setMessage(jsonObject.getString("
return message;

}

@override
public boolean willDecode(String jsonMessag

try {
// Check if incoming message is valid J
Json.createReader (new StringReader(json
return true;

} catch (Exception e) {
return false;

}

@override
public void init(EndpointConfig ec) {
System.out.println("Initializing message

}

@override
public void destroy() {
System.out.println("Destroyed message dec

}

Listing 6 shows the Encoder class implementation, which is
named MessageEncoder. This class encodes the server-side
Message object to a JsonObject to be passed back to the
client for processing. The interface uses generics to implement
the encoder for the accepted Java object.

The class then overrides three methods: init (), encode(),
and destroy (). Again, much like the WebSocket endpoint, the
encoder is very much event-based in that the init () method
accepts an EndpointConfig object, and it’s initiated once for
each client session that is opened. The encode () method
accepts the object being encoded, in this case Message, and
performs processing to translate that object into JSON before it's
sent back to the client. Lastly, the destroy () method is
invoked when the client session becomes invalid.

Listing 6. The Encoder class implementation

package com.employeeevent.acmechat;

import jakarta.json.Json;

import jakarta.json.JsonObject;

import jakarta.websocket.EncodeException;
import jakarta.websocket.Encoder;

import jakarta.websocket.EndpointConfig;

public class MessageEncoder implements Encode

@override
public String encode(Message message) throw

JsonObject jsonObject = Json.createObject
.add("username", message.getUsername (
.add("message", message.getMessage())

return jsonObject.toString();

}

@Override
public void init(EndpointConfig ec) {
System.out.println("Initializing message

}

@override
public void destroy() {
System.out.println("Destroying encode

The client endpoint

You can develop a client endpoint to communicate with a
WebSocket server endpoint. The simplest client endpoint is a
standard Java class that is annotated with @ClientEndpoint.
You can see the full source code of a ClientEndpoint
example in Listing 7.

Listing 7. Code for a client endpoint

@ClientEndpoint
public class BasicClient {

Session session = null;
private MessageHandler handler;

public BasicClient(URI endpointURI) {
try {
WebSocketContainer container = Co
container.connectToServer (this, e
} catch (Exception e) {
throw new RuntimeException(e);

}

@OnOpen
public void onOpen(Session session) {
this.session = session;
try {
session.getBasicRemote () .sendText ("Op
} catch (IOException ex)({
System.out.println(ex);

}

public void addMessageHandler (MessageHand
this.handler = msgHandler;

@OnMessage
public void processMessage(String message
System.out.println("Received message

}

public void sendMessage(String message) {

try {
this.session.getBasicRemote().sen

} catch (IOException ex) {
Logger.getLogger (BasicClient.clas

public static interface MessageHandler {

public void handleMessage(String mess

In this example, the ClientEndpoint is named BasicClient
. A Session and MessageHandler are declared within the
class, and the constructor accepts a URI. Upon instantiation via
the constructor, a
ContainerProvider.getWebsocketContainer () is called
to obtain a WebsocketContainer instance identified as
container. The container.connectToServer () method
is then invoked, passing the endpoint URI to instantiate the client
connection.

The client contains a method named onOpen (), which is
annotated with @OnOpen, and accepts a Session. This method
is invoked when the ClientEndpoint connection is open, and
it sets the session and then calls upon the
getBasicRemote () .sendText () method to send a message
to the client to indicate the connection is open.

The client also contains a method named processMessage(),
annotated with @OnMessage, which accepts a string. This
method is called upon when a message is received from the
ServerEndpoint. The client sendMessage () method also
accepts a string, and it calls upon the
session.getBasicRemote () .sendText () method to send
the message to the ServerEndpoint.

This particular example also contains an internal
MessageHandler interface and an addMessageHandler ()
method, which are used to send the messages from the client.
You can use the following code to work with the client:

// open websocket
final BasicClient clientEndPoint = new BasicC
new URI("ws://localhost:8080/AcmeChat
// add listener
clientEndPoint.addMessageHandler (new BasicCli
public void handleMessage(String message)
System.out.println(message);

})i
// send message to websocket
clientEndPoint.sendMessage("Message sent from

WebSocket customization

Sometimes you have a requirement to develop custom
implementations, such as client/server handshake policies or
state processing. For such cases, the
ServerEndpointConfig.Configurator provides an option
allowing you to create your own implementation. You can
implement the following methods to provide customized
configurations:

® getNegotiatedSubProtocol (List<String>
supported, List<String> requested)
: Allows a customized algorithm to determine the selection
of the subprotocol that’s used

® getNegotiatedExtensions(List<Extension>
installed, List<Extension> requested)
: Allows a customized algorithm to determine the selection
of the extensions that are used

®* checkOrigin(String originHeaderValue): Allows
the specification of an origin-checking algorithm

* modifyHandshake(ServerEndpointConfig sec,
HandshakeRequest req, HandshakeResponse
res)

: Allows for modification of the handshake response that’s
sent back to the client

® getEndpointInstance(Class<T> endpointClass):
Allows a customized implementation for the creation of an
Endpoint instance

The same holds true for the
ClientEndpoint.Configurator, in that the configurator
allows for customization of some algorithms during the
connection initialization phase. You can customize the
configuration using these two methods:

®* beforeRequest (Map<String, List<String>>
headers)
: Allows for the modification of headers before a request is
sent

* afterResponse(HandshakeResponse res): Allows
for the customization of the processing for a handshake
response

Conclusion

The Jakarta WebSocket API provides a means for developing
server-side endpoints to process and broadcast messages, as
well as client endpoints for sending and receiving messages.
Using the API, it's possible to handle textual or binary messages
and translate them to Java objects for processing. Moreover,

since the APl is part of Jakarta EE, you can code against a
standard API, allowing you to customize an implementation
based on individual requirements.

There are plenty of great examples on the web for developing
WebSocket applications in different ways. As stated previously,
you can share code between the various versions of Java EE
and Jakarta EE by simply ensuring that you use the correct
namespace. Use the links below to learn more about
WebSockets and to download the examples for this article.

Dig deeper

* Code examples for this article

e Jakarta WebSocket API, which is part of the Jakarta EE
platform

e \WebSocket interface in JDK 15
e JSR 356, Java API for WebSocket

e The Java EE 7 tutorial’s section on Java API for
WebSocket

¢ Payara Platform Community Edition

* Reactive streams programming over WebSockets with
Helidon SE

¢ Transition from Java EE to Jakarta EE

Josh Juneau

Josh Juneau (@javajuneau) works as an
application developer, system analyst, and
database administrator. He primarily
develops using Java and other JVM
languages. He is a frequent contributor to
Oracle Technology Network and Java
Magazine and has written several books for
Apress about Java and Java EE. Juneau
was a JCP Expert Group member for JSSR
372 and JSR 378. He is a member of the
NetBeans Dream Team, a Java Champion,
leader for the CJUG OSS Initiative, and a
regular voice on the JavaPubHouse Off
Heap podcast.

Share this Page

Contact About Us Downloads and Trials News and Events

US Sales: +1.800.633.0738 Careers Java for Developers Acquisitions

https://blogs.oracle.com/javamagazine/josh-juneau
https://blogs.oracle.com/javamagazine/josh-juneau
https://www.twitter.com/javajuneau
https://github.com/juneau001/AcmeChat
https://jakarta.ee/specifications/websocket/
https://jakarta.ee/
https://docs.oracle.com/en/java/javase/15/docs/api/java.net.http/java/net/http/WebSocket.html
https://www.oracle.com/technical-resources/articles/java/jsr356.html
https://docs.oracle.com/javaee/7/tutorial/websocket.htm
https://www.payara.fish/downloads/payara-platform-community-edition/
https://blogs.oracle.com/javamagazine/reactive-streams-programming-over-websockets-with-helidon-se
https://blogs.oracle.com/javamagazine/transition-from-java-ee-to-jakarta-ee
https://www.oracle.com/corporate/careers/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.oracle.com/corporate/acquisitions/

Global Contacts Communities
Support Directory Company Information

Subscribe to Emails Social Responsibility Emails

orascLe | Integrated Cloud

Applications & Platform Services

Java Runtime Download Blogs
Software Downloads Events

Try Oracle Cloud Newsroom

© Oracle | Site Map | Terms of Use & Privacy | Cookie Preferences | Ad Choices

https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

