
January 2020

CODING

Programming the GPU in Java
Accessing the GPU from Java unleashes
remarkable firepower. Here’s how the GPU
works and how to access it from Java.
by Dmitry Aleksandrov

January 10, 2020

Programming a graphics processing unit (GPU) seems like a distant
world from Java programming. This is understandable, because most of
the use cases for Java are not applicable to GPUs. Nonetheless, GPUs
offer teraflops of performance, so let’s explore their possibilities.

To make the topic approachable, I’ll spend some time explaining GPU
architecture along with a little history, which will make it easier to dive into
programming the hardware. Once I’ve shown how the GPU differs from
CPU computing, I’ll show how to use GPUs in the Java world. Finally, I
will describe the leading frameworks and libraries available for writing
Java code and running it on GPUs, and I’ll provide some code samples.

A Little Background

The GPU was first popularized by Nvidia in 1999. It is a special processor
designed to process graphical data before it is transferred to the display.
In most cases, it enables some of the computation to be offloaded from
the CPU, thus freeing CPU resources while speeding up those offloaded
computations. The result is that more input data can be processed and
presented at much higher output resolutions, making the visual
representation more attractive and the frame rate more fluid.

The nature of 2D/3D processing is mostly matrix manipulation, so it can
be handled with a massively parallel approach. What would be an
effective approach for image processing? To answer this, let’s compare
the architecture of standard CPUs (shown in Figure 1) and GPUs.

Figure 1. Block architecture of a CPU

In the CPU, the actual processing elements—the fetchers, the arithmetic
logic unit (ALU), and the execution contexts—are just a small part of the
whole system. To speed up the irregular calculations arriving in

Programming the GPU in Java

A Little Background

Running Programs on the GPU

Advent of the GPGPU

OpenCL and Java

CUDA and Java

Staying Above Low-Level Code

Conclusion

SubscribeTopics Issues Downloads

Search Java Magazine

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/january-2020-v2
https://blogs.oracle.com/javamagazine/coding-2
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://www.oracle.com/

unpredictable order, there are a large, fast, and expensive cache;
different kinds of prefetchers; and branch predictors.

You don’t need all of this on a GPU, because the data is received in a
predictable manner and the GPU performs a very limited set of
operations on the data. Thus, it is possible to make a very small and
inexpensive processor with a block architecture similar to that in Figure
2.

Figure 2. Block architecture for a simple GPU core

Because these kinds of processors are cheap and they process data in
parallel chunks, it’s easy to put many of them to work in parallel. This
design is referred to as multiple instruction, multiple data or MIMD
(pronounced “mim-dee”).

A second approach focuses on the fact that often a single instruction is
applied to multiple data items. This is known as single instruction,
multiple data or SIMD (pronounced “sim-dee”). In this design, a single
GPU contains multiple ALUs and execution contexts, with a small area
dedicated to shared context data, as shown in Figure 3.

Figure 3. Comparing a MIMD-style GPU block architecture (left) with a SIMD design

(right)

Combining SIMD and MIMD processing provides the maximal processing
throughput, which I’ll discuss shortly. In such a design, you have multiple
SIMD processors running in parallel, as shown in Figure 4.

Figure 4. Running multiple SIMD processors in parallel; here, 16 cores with 128 total

ALUs

Because you have a bunch of small, simple processors, you can program
them to gain special effects in the output.

Running Programs on the GPU

Most of the early visual effects in games were actually hardcoded small
programs running on a GPU and applied to the data stream from the
CPU.

It was obvious, even then, that hardcoded algorithms were insufficient,
especially in game design, where visual representation is actually one of
the main selling points. In response, the big vendors opened access to
GPUs, and then third-party developers could code for them.

The typical approach was to write small programs, called shaders, in a
special language (usually a subset of C) and compile them with a special
compiler for the corresponding architecture. The term shaders was
chosen because shaders were often used to control lighting and shading
effects, but there’s no reason they can’t handle other special effects.

Each GPU vendor had its own specific programming language and
infrastructure for creating shaders for its hardware. From these efforts,
several platforms have been created. The major ones include

DirectCompute: A proprietary shader language/API from Microsoft
that is part of Direct3D, starting with DirectX 10



AMD FireStream: An ATI/Radeon proprietary technology, which
was discontinued by AMD



OpenACC: A multivendor-consortium parallel computing solution

C++ AMP: A Microsoft proprietary library for data parallelism in C++

CUDA: Nvidia’s proprietary platform, which uses a subset of the C
language



OpenCL: A common standard originally designed by Apple but now
managed by the consortium Khronos Group



https://en.wikipedia.org/wiki/DirectCompute
https://en.wikipedia.org/wiki/AMD_FireStream
https://en.wikipedia.org/wiki/OpenACC
https://en.wikipedia.org/wiki/C++_AMP
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/OpenCL

Most of the time, working with GPUs is low-level programming. To make
it a little bit more understandable for developers to code, several
abstractions are provided. The most famous are DirectX, from Microsoft,
and OpenGL, from the Khronos Group. These APIs are for writing high-
level code, which then can be offloaded to the GPU mostly seamlessly by
the developer.

As far as I know, there is no Java infrastructure that supports DirectX, but
there is a nice binding for OpenGL. JSR 231 was started in 2002 to
address GPU programming, but it was abandoned in 2008 and supported
only OpenGL 2.0. Support of OpenGL has been continued in an
independent project called JOCL, (which also supports OpenCL), and it’s
publicly available. By the way, the famous Minecraft game was written
with JOCL underneath.

Advent of the GPGPU

Still, Java and GPUs are not a seamless fit, although they should be.
Java is heavily used in enterprises, data science, and the financial sector,
where many computations and a lot of processing power are needed.
This is how the idea of the general-purpose GPU (GPGPU) came about.

The idea to use the GPU this way started when the vendors of video
adapters started to open the frame buffer programmatically, enabling
developers to read the contents. Some hackers recognized that they
could then use the full power of the GPU for general-purpose
computations. The recipe was straightforward:

1. Encode the data as a bitmap array.

2. Write a shader to process it.

3. Submit them both to the video card.

4. Retrieve the result from the frame buffer.

5. Decode the data from the bitmap array.

This is a very simplified explanation. I’m not sure this process was ever
heavily used in production, but it did work.

Then several researchers from Stanford University began looking for a
way to make using a GPGPU easier. In 2005 they released BrookGPU,
which was a small ecosystem that included a language, a compiler, and a
runtime.

BrookGPU compiled programs written in the Brook stream programming
language, which is a variant of ANSI C. It could target OpenGL v1.3+,
DirectX v9+, or AMD’s Close to Metal for the computational back end,
and it ran on both Microsoft Windows and Linux. For debugging,
BrookGPU could also simulate a virtual graphics card on the CPU.

However, it did not take off, because of the hardware available at the
time. In the GPGPU world, you need to copy the data to the device (in
this context, device refers to the GPU and the board on which it is
situated), wait for the GPU to process the data, and then copy the data
back to the main runtime. This creates a lot of latency. And in the mid-
2000s, when the project was under active development, this latency
almost precluded extensive use of GPUs for general computing.

Nevertheless, many companies saw a future in this technology. Several
video adapter vendors started providing GPGPUs with their proprietary
technologies, and others formed alliances to provide more-general,
versatile programming models to run a larger variety of hardware
devices.

Now that I’ve shared this background, let’s examine the two most
successful technologies for GPU computing—OpenCL and CUDA—and
see how Java works with them.

OpenCL and Java

https://en.wikipedia.org/wiki/DirectX
https://en.wikipedia.org/wiki/OpenGL
http://www.jocl.org/
https://en.wikipedia.org/wiki/BrookGPU

Like many other infrastructure packages, OpenCL provides a base
implementation in C. It is technically accessible via Java Native Interface
(JNI) or Java Native Access (JNA), but such access would be a bit too
much work for most developers. Fortunately, this work has already been
done by several libraries: JOCL, JogAmp, and JavaCL. Unfortunately,
JavaCL is a dead project. But the JOCL project is alive and quite up to
date. I will use it in the following examples.

But first I should explain what OpenCL is. As I mentioned earlier, OpenCL
provides a very general model, suitable for programming all sorts of
devices—not only GPUs and CPUs but even digital signal processors
(DSPs) and field-programmable gate arrays (FPGAs) as well.

Let’s explore the easiest example: vector addition, probably the most
representative and simple example. You have two integer arrays you’re
adding and one resulting array. You take an element from the first array
and an element from the second array, and then you put the sum of them
in the result array, as shown in Figure 5.

Figure 5. Adding the contents of two arrays and storing the sums in a result array

As you can see, the operation is highly concurrent and thus very
parallelizable. You can push each of the add operations to a separate
GPU core. This means that if you have 2,048 cores, as on an Nvidia
1080 graphics card, you can perform 2,048 simultaneous add operations.
That means there are potentially teraflops of computing power waiting for
you. Here is the code for arrays with 10 million integers taken from the
JOCL site:

public class ArrayGPU {public class ArrayGPU {
 /** /**
 * The source code of the OpenCL program * The source code of the OpenCL program
 */ */
 private static String programSource = private static String programSource =
 "__kernel void "+ "__kernel void "+
 "sampleKernel(__global const float *a,"+ "sampleKernel(__global const float *a,"+
 " __global const float *b,"+ " __global const float *b,"+
 " __global float *c)"+ " __global float *c)"+
 "{"+ "{"+
 " int gid = get_global_id(0);"+ " int gid = get_global_id(0);"+
 " c[gid] = a[gid] + b[gid];"+ " c[gid] = a[gid] + b[gid];"+
 "}"; "}";

 public static void main(String args[]) public static void main(String args[])
 { {
 int n = 10_000_000; int n = 10_000_000;
 float srcArrayA[] = new float[n]; float srcArrayA[] = new float[n];
 float srcArrayB[] = new float[n]; float srcArrayB[] = new float[n];
 float dstArray[] = new float[n]; float dstArray[] = new float[n];
 for (int i=0; i<n; i++) for (int i=0; i<n; i++)
 { {
 srcArrayA[i] = i; srcArrayA[i] = i;
 srcArrayB[i] = i; srcArrayB[i] = i;
 } }
 Pointer srcA = Pointer.to(srcArrayA); Pointer srcA = Pointer.to(srcArrayA);
 Pointer srcB = Pointer.to(srcArrayB); Pointer srcB = Pointer.to(srcArrayB);
 Pointer dst = Pointer.to(dstArray); Pointer dst = Pointer.to(dstArray);

 // The platform, device type and device numb // The platform, device type and device numb
 // that will be used // that will be used
 final int platformIndex = 0; final int platformIndex = 0;
 final long deviceType = CL.CL_DEVICE_TYPE_AL final long deviceType = CL.CL_DEVICE_TYPE_AL
 final int deviceIndex = 0; final int deviceIndex = 0;

 // Enable exceptions and subsequently omit e // Enable exceptions and subsequently omit e
 CL.setExceptionsEnabled(true); CL.setExceptionsEnabled(true);

 // Obtain the number of platforms // Obtain the number of platforms
 int numPlatformsArray[] = new int[1]; int numPlatformsArray[] = new int[1];
 CL.clGetPlatformIDs(0, null, numPlatformsArr CL.clGetPlatformIDs(0, null, numPlatformsArr

http://www.jocl.org/
https://github.com/gpu/JOCLSamples/blob/master/src/main/java/org/jocl/samples/JOCLSample.java

 int numPlatforms = numPlatformsArray[0]; int numPlatforms = numPlatformsArray[0];

 // Obtain a platform ID // Obtain a platform ID
 cl_platform_id platforms[] = new cl_platform cl_platform_id platforms[] = new cl_platform
 CL.clGetPlatformIDs(platforms.length, platfo CL.clGetPlatformIDs(platforms.length, platfo
 cl_platform_id platform = platforms[platform cl_platform_id platform = platforms[platform

 // Initialize the context properties // Initialize the context properties
 cl_context_properties contextProperties = ne cl_context_properties contextProperties = ne
 contextProperties.addProperty(CL.CL_CONTEXT_ contextProperties.addProperty(CL.CL_CONTEXT_

 // Obtain the number of devices for the plat // Obtain the number of devices for the plat
 int numDevicesArray[] = new int[1]; int numDevicesArray[] = new int[1];
 CL.clGetDeviceIDs(platform, deviceType, 0, n CL.clGetDeviceIDs(platform, deviceType, 0, n
 int numDevices = numDevicesArray[0]; int numDevices = numDevicesArray[0];

 // Obtain a device ID // Obtain a device ID
 cl_device_id devices[] = new cl_device_id[nu cl_device_id devices[] = new cl_device_id[nu
 CL.clGetDeviceIDs(platform, deviceType, numD CL.clGetDeviceIDs(platform, deviceType, numD
 cl_device_id device = devices[deviceIndex]; cl_device_id device = devices[deviceIndex];

 // Create a context for the selected device // Create a context for the selected device
 cl_context context = CL.clCreateContext(cl_context context = CL.clCreateContext(
 contextProperties, 1, new cl_device_id[contextProperties, 1, new cl_device_id[
 null, null, null); null, null, null);

 // Create a command-queue for the selected d // Create a command-queue for the selected d
 cl_command_queue commandQueue = cl_command_queue commandQueue =
 CL.clCreateCommandQueue(context, device CL.clCreateCommandQueue(context, device

 // Allocate the memory objects for the input // Allocate the memory objects for the input
 cl_mem memObjects[] = new cl_mem[3]; cl_mem memObjects[] = new cl_mem[3];
 memObjects[0] = CL.clCreateBuffer(context, memObjects[0] = CL.clCreateBuffer(context,
 CL.CL_MEM_READ_ONLY | CL.CL_MEM_COPY_HOS CL.CL_MEM_READ_ONLY | CL.CL_MEM_COPY_HOS
 Sizeof.cl_float * n, srcA, null); Sizeof.cl_float * n, srcA, null);
 memObjects[1] = CL.clCreateBuffer(context, memObjects[1] = CL.clCreateBuffer(context,
 CL.CL_MEM_READ_ONLY | CL.CL_MEM_COPY_HOS CL.CL_MEM_READ_ONLY | CL.CL_MEM_COPY_HOS
 Sizeof.cl_float * n, srcB, null); Sizeof.cl_float * n, srcB, null);
 memObjects[2] = CL.clCreateBuffer(context, memObjects[2] = CL.clCreateBuffer(context,
 CL.CL_MEM_READ_WRITE, CL.CL_MEM_READ_WRITE,
 Sizeof.cl_float * n, null, null); Sizeof.cl_float * n, null, null);

 // Create the program from the source code // Create the program from the source code
 cl_program program = CL.clCreateProgramWithS cl_program program = CL.clCreateProgramWithS
 1, new String[]{ programSource }, null, 1, new String[]{ programSource }, null,

 // Build the program // Build the program
 CL.clBuildProgram(program, 0, null, null, nu CL.clBuildProgram(program, 0, null, null, nu

 // Create the kernel // Create the kernel
 cl_kernel kernel = CL.clCreateKernel(program cl_kernel kernel = CL.clCreateKernel(program

 // Set the arguments for the kernel // Set the arguments for the kernel
 CL.clSetKernelArg(kernel, 0, CL.clSetKernelArg(kernel, 0,
 Sizeof.cl_mem, Pointer.to(memObjects[0] Sizeof.cl_mem, Pointer.to(memObjects[0]
 CL.clSetKernelArg(kernel, 1, CL.clSetKernelArg(kernel, 1,
 Sizeof.cl_mem, Pointer.to(memObjects[1] Sizeof.cl_mem, Pointer.to(memObjects[1]
 CL.clSetKernelArg(kernel, 2, CL.clSetKernelArg(kernel, 2,
 Sizeof.cl_mem, Pointer.to(memObjects[2] Sizeof.cl_mem, Pointer.to(memObjects[2]

 // Set the work-item dimensions // Set the work-item dimensions
 long global_work_size[] = new long[]{n}; long global_work_size[] = new long[]{n};
 long local_work_size[] = new long[]{1}; long local_work_size[] = new long[]{1};

 // Execute the kernel // Execute the kernel
 CL.clEnqueueNDRangeKernel(commandQueue, kern CL.clEnqueueNDRangeKernel(commandQueue, kern
 global_work_size, local_work_size, 0, nu global_work_size, local_work_size, 0, nu

 // Read the output data // Read the output data
 CL.clEnqueueReadBuffer(commandQueue, memObje CL.clEnqueueReadBuffer(commandQueue, memObje
 n * Sizeof.cl_float, dst, 0, null, null n * Sizeof.cl_float, dst, 0, null, null

 // Release kernel, program, and memory objec // Release kernel, program, and memory objec
 CL.clReleaseMemObject(memObjects[0]); CL.clReleaseMemObject(memObjects[0]);
 CL.clReleaseMemObject(memObjects[1]); CL.clReleaseMemObject(memObjects[1]);
 CL.clReleaseMemObject(memObjects[2]); CL.clReleaseMemObject(memObjects[2]);
 CL.clReleaseKernel(kernel); CL.clReleaseKernel(kernel);
 CL.clReleaseProgram(program); CL.clReleaseProgram(program);
 CL.clReleaseCommandQueue(commandQueue); CL.clReleaseCommandQueue(commandQueue);
 CL.clReleaseContext(context); CL.clReleaseContext(context);

 } }

 private static String getString(cl_device_id dev private static String getString(cl_device_id dev

This code doesn’t look like Java, but it actually is. I’ll explain the code
next; don’t spend a lot of time on it now, because I will shortly discuss
less complicated solutions.

The code is well documented, but let’s do a small walk-through. As you
can see, the code is very C-like. This is quite normal, because JOCL is
just the binding to OpenCL. At the start, there is some code inside a
string, and this code is actually the most important part: It gets compiled
by OpenCL and then sent to the video card and executed there. This
code is called a kernel. Do not confuse this term with an OS kernel; this
is the device code. This kernel code is written in a subset of C.

After the kernel comes the Java binding code to set up and orchestrate
the device, to chunk the data, and to create proper memory buffers on
the device where the data is going to be stored as well as the memory
buffers for the resulting data.

To summarize: There is “host code,” which is usually a language binding
(in this case, Java), and the “device code.” You always distinguish what
runs on the host and what should run on the device, because the host
controls the device.

The preceding code should be viewed as the GPU equivalent of “Hello
World!” As you see, the amount of ceremony is vast.

Let’s not forget the SIMD capabilities. If your hardware supports SIMD
extensions, you can make arithmetic code run much faster. For example,
let’s look at the matrix multiplication kernel code. This is the code in the
raw string of your Java application.

Technically, this code will work on a chunk of data that was set up for you
by the OpenCL framework, with the instructions you supply in the
preparation ceremony.

If your video card supports SIMD instructions and is able to process
vectors of four floats, a small optimization may turn the previous code
into the following code:

 // Obtain the length of the string that will // Obtain the length of the string that will
 long size[] = new long[1]; long size[] = new long[1];
 CL.clGetDeviceInfo(device, paramName, 0, nul CL.clGetDeviceInfo(device, paramName, 0, nul

 // Create a buffer of the appropriate size a // Create a buffer of the appropriate size a
 byte buffer[] = new byte[(int)size[0]]; byte buffer[] = new byte[(int)size[0]];
 CL.clGetDeviceInfo(device, paramName, buffer CL.clGetDeviceInfo(device, paramName, buffer

 // Create a string from the buffer (excludin // Create a string from the buffer (excludin
 return new String(buffer, 0, buffer.length-1 return new String(buffer, 0, buffer.length-1
 } }
}}

__kernel void MatrixMul_kernel_basic(int dim,__kernel void MatrixMul_kernel_basic(int dim,
 __global float *A, __global float *A,
 __global float *B, __global float *B,
 __global float *C){ __global float *C){

 int iCol = get_global_id(0); int iCol = get_global_id(0);
 int iRow = get_global_id(1); int iRow = get_global_id(1);
 float result = 0.0; float result = 0.0;
 for(int i=0; i< dim; ++i) for(int i=0; i< dim; ++i)
 { {
 result += result +=
 A[iRow*dim + i]*B[i*dim + iCol]; A[iRow*dim + i]*B[i*dim + iCol];
 } }
 C[iRow*dim + iCol] = result; C[iRow*dim + iCol] = result;
}}

#define VECTOR_SIZE 4 #define VECTOR_SIZE 4
__kernel void MatrixMul_kernel_basic_vector4(__kernel void MatrixMul_kernel_basic_vector4(
 size_t dim, // dimension is in single floats size_t dim, // dimension is in single floats
 const float4 *A, const float4 *A,
 const float4 *B, const float4 *B,
 float4 *C) float4 *C)

With this code, you can double the performance.

Cool. You have unlocked the GPU for the Java world! But as a Java
developer, do you really want to do all of this binding, write C code, and
work with such low-level details? I certainly don’t. But now that you have
some knowledge of how the GPU architecture is used, let’s look at other
solutions beyond the JOCL code I’ve just presented.

CUDA and Java

CUDA is Nvidia’s solution to these coding issues. CUDA provides many
more ready-to-use libraries for standard GPU operations, such as
matrices, histograms, and even deep neural networks. The emerging
library list already contains many useful bindings. These are from the
JCuda project:

I’ll describe using JCurand, which generates random numbers. You can
directly use it from Java code with no other specific kernel languages. For
example:

{{
 size_t globalIdx = get_global_id(0); size_t globalIdx = get_global_id(0);
 size_t globalIdy = get_global_id(1); size_t globalIdy = get_global_id(1);
 float4 resultVec = (float4){ 0, 0, 0, 0 }; float4 resultVec = (float4){ 0, 0, 0, 0 };
 size_t dimVec = dim / 4; size_t dimVec = dim / 4;
 for(size_t i = 0; i < dimVec; ++i) { for(size_t i = 0; i < dimVec; ++i) {
 float4 Avector = A[dimVec * globalIdy + i]; float4 Avector = A[dimVec * globalIdy + i];
 float4 Bvector[4]; float4 Bvector[4];
 Bvector[0] = B[dimVec * (i * 4 + 0) + global Bvector[0] = B[dimVec * (i * 4 + 0) + global
 Bvector[1] = B[dimVec * (i * 4 + 1) + global Bvector[1] = B[dimVec * (i * 4 + 1) + global
 Bvector[2] = B[dimVec * (i * 4 + 2) + global Bvector[2] = B[dimVec * (i * 4 + 2) + global
 Bvector[3] = B[dimVec * (i * 4 + 3) + global Bvector[3] = B[dimVec * (i * 4 + 3) + global
 resultVec += Avector[0] * Bvector[0]; resultVec += Avector[0] * Bvector[0];
 resultVec += Avector[1] * Bvector[1]; resultVec += Avector[1] * Bvector[1];
 resultVec += Avector[2] * Bvector[2]; resultVec += Avector[2] * Bvector[2];
 resultVec += Avector[3] * Bvector[3]; resultVec += Avector[3] * Bvector[3];
 } }

 C[dimVec * globalIdy + globalIdx] = resultVec; C[dimVec * globalIdy + globalIdx] = resultVec;
}}

JCublas: all about matrices

JCufft: fast Fourier transforms

JCurand: all about random numbers

JCusparse: sparse matrices

JCusolver: factorization

JNvgraph: all about graphs

JCudpp: CUDA Data Parallel Primitives Library and some sorting
algorithms



JNpp: image processing on a GPU

JCudnn: a deep neural network library

......
int n = 100;int n = 100;
curandGenerator generator = new curandGenerator();curandGenerator generator = new curandGenerator();
float hostData[] = new float[n];float hostData[] = new float[n];
Pointer deviceData = new Pointer();Pointer deviceData = new Pointer();
cudaMalloc(deviceData, n * Sizeof.FLOAT);cudaMalloc(deviceData, n * Sizeof.FLOAT);
curandCreateGenerator(generator, CURAND_RNG_PSEUDO_DcurandCreateGenerator(generator, CURAND_RNG_PSEUDO_D
curandSetPseudoRandomGeneratorSeed(generator, 1234)curandSetPseudoRandomGeneratorSeed(generator, 1234)
curandGenerateUniform(generator, deviceData, n);curandGenerateUniform(generator, deviceData, n);
cudaMemcpy(Pointer.to(hostData), deviceData, cudaMemcpy(Pointer.to(hostData), deviceData,
 n * Sizeof.FLOAT, cudaMemcpyDeviceToHost); n * Sizeof.FLOAT, cudaMemcpyDeviceToHost);
System.out.println(Arrays.toString(hostData));System.out.println(Arrays.toString(hostData));
curandDestroyGenerator(generator);curandDestroyGenerator(generator);
cudaFree(deviceData);cudaFree(deviceData);
......

http://www.jcuda.org/
http://www.jcuda.org/jcuda/jcurand/JCurand.html

Here the GPU is used to create more random numbers of high quality,
based on some very strong mathematics.

In JCuda you can also write generic CUDA code and call it from Java by
just adding some JAR files to your classpath. See the JCuda
documentation for more examples.

Staying Above Low-Level Code

This all looks great, but there is too much ceremony, too much setup, and
too many different languages to get this running. Is there a way to use a
GPU at least partially?

What if you don’t want to think about all of this OpenCL, CUDA, and other
internal stuff? What if you just want to code in Java and not think about
the internals? The Aparapi project can help. Aparapi stands for “a parallel
API.” I think of it as a kind of Hibernate for GPU programming that uses
OpenCL under the hood. Let’s look at an example of vector addition.

This is pure Java code (taken from the Aparapi documentation), although
here and there, you can spot some GPU domain-specific terms such as

 and . You still need to understand how the GPU is
programmed, but you can approach GPGPU in a more Java-friendly way.
Moreover, Aparapi provides an easy way to bind OpenGL contexts to the
OpenCL layer underneath—thus enabling the data to stay entirely on the
video card—and thereby avoid memory latency issues.

If many independent computations need to be done, consider Aparapi.
This rich set of examples gives some use cases that are perfect for
massive parallel computations.

In addition, there are several projects such as TornadoVM that
automatically offload suitable calculations from the CPU to the GPU, thus
enabling massive optimizations out of the box.

Conclusion

Although there are many applications where GPUs can bring some
game-changing benefits, you might say there are still some obstacles.
However, Java and GPUs can do great things together. In this article, I
have only scratched the surface of this vast topic. My intention was to
show various high- and low-level options for accessing a GPU from Java.
Exploring this area will deliver huge performance benefits, especially for

public static void main(String[] _args) {public static void main(String[] _args) {
 final int size = 512; final int size = 512;
 final float[] a = new float[size]; final float[] a = new float[size];
 final float[] b = new float[size]; final float[] b = new float[size];

 /* fill the arrays with random values */ /* fill the arrays with random values */
 for (int i = 0; i < size; i++){ for (int i = 0; i < size; i++){
 a[i] = (float) (Math.random() * 100); a[i] = (float) (Math.random() * 100);
 b[i] = (float) (Math.random() * 100); b[i] = (float) (Math.random() * 100);
 } }
 final float[] sum = new float[size]; final float[] sum = new float[size];

 Kernel kernel = new Kernel(){ Kernel kernel = new Kernel(){
 @Override public void run() { @Override public void run() {
I int gid = getGlobalId();I int gid = getGlobalId();
 sum[gid] = a[gid] + b[gid]; sum[gid] = a[gid] + b[gid];
 } }
 }; };

 kernel.execute(Range.create(size)); kernel.execute(Range.create(size));
 for(int i = 0; i < size; i++) { for(int i = 0; i < size; i++) {
 System.out.printf("%6.2f + %6.2f = %8.2f\n" System.out.printf("%6.2f + %6.2f = %8.2f\n"
 } }
 kernel.dispose(); kernel.dispose();
}}

KernelKernel getGlobalIdgetGlobalId

http://www.jcuda.org/jcuda/JCuda.html
http://aparapi.com/
https://github.com/Syncleus/aparapi-examples/blob/master/src/main/java/com/aparapi/examples/add/Main.java
https://github.com/Syncleus/aparapi-examples
https://github.com/beehive-lab/TornadoVM

Dmitry Aleksandrov
Dmitry Aleksandrov (@bercut2000) is a chief
architect at T-Systems, a Java Champion, Oracle
Groundbreaker, and blogger. He has more than a
decade experience mainly in Java Enterprise in
banking/telecom, but he is also interested in
dynamic languages on JVM and features such as
massive-parallel computations on GPUs. He is a
colead of the Bulgarian Java User Group and co-
organizer of jPrime Conf. Dmitry is also a frequent
speaker at local events as well as conferences such
as JavaOne/Code One, Devoxx, JavaZone, and
Joker/JPoint.

Share this Page

complex problems that require numerous calculations that can be
performed in parallel.


Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738
Global Contacts
Support Directory
Subscribe to Emails

About Us
Careers
Communities
Company Information
Social Responsibility Emails

Downloads and Trials
Java for Developers
Java Runtime Download
Software Downloads
Try Oracle Cloud

News and Events
Acquisitions
Blogs
Events
Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/dmitry-aleksandrov
https://blogs.oracle.com/javamagazine/dmitry-aleksandrov
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

