
FRAMEWORKS

Web microservices
development in Java that will
Spark joy
The Spark framework might be the
platform you need for building web
applications that run in the JVM.

by Maarten Mulders

June 25, 2021

Spark is a compact framework for building web applications that
run on the JVM. It comes with an embedded web server, Jetty,
so you can get started in minutes.

After adding a dependency on ,
all you need to do is write the application skeleton and you’re off
and running.

You can see a couple of interesting things in this small snippet.

Before diving in, I need to clear off a little bit of dust.

com.sparkjava:spark-corecom.sparkjava:spark-core

import static spark.Spark.*;import static spark.Spark.*;

public class JavaMagazineApplication {public class JavaMagazineApplication {
 public static void main(String... args) { public static void main(String... args) {
 get("/hello", (req, res) -> "Hello World" get("/hello", (req, res) -> "Hello World"
 } }
}}

Spark leverages functional interfaces, so it’s easy to use
lambda expressions for handling a request.

Spark doesn’t require annotations on a method to map it
on a request path. Instead, it lets you create this mapping
in a programmatic way using a clean domain-specific
language (DSL).

There’s no boilerplate code required to bootstrap an
application: It’s all done for you.

Web microservices
development in Java that will
Spark joy

Main Spark concepts

Packaging an application for
deployment

Starting fast and staying small

Spark and REST

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://app.compendium.com/javamagazine
https://blogs.oracle.com/javamagazine/frameworks
http://sparkjava.com/
https://www.eclipse.org/jetty/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://app.compendium.com/javamagazine/issue-archives
https://www.oracle.com/

As microservices have become a ubiquitous architectural
pattern, there’s been a renewed interest in the size of deployed
applications and their startup time. In recent years, Helidon,
Micronaut, Quarkus, and Spring Boot have entered this space.
But the concept of microframeworks is older than those new kids
on the block. Let me introduce you to Spark.

If you search the web for that name, chances are you’ll find
information related to Apache Spark, the analytics engine,
initially released in May 2014 by Matei Zaharia. That’s
something else entirely. Put it out of your mind.

Spark (the one in this article) was founded by Per Wendel, and
cofounded by Love Löfdahl, and it dates back to 2013. It’s even
older than Apache Spark.

To distinguish the two Sparks, the microframework this article
covers is often dubbed Spark Java, and that’s even the URL:
sparkjava.com. The official Stack Overflow tag for the
microframework is even spark-java. That name doesn’t
completely cover the matter either, since you can equally well
use Kotlin to write applications. But thinking about the framework
as Spark Java will prevent you from reading about data science
stuff and wondering how you got there.

Spark declares many functional interfaces, which is why Spark
requires Java 8 at a minimum. All code samples in this article
can be found on GitHub. All these samples require Java 11 to
run; I wrote them that way to be more concise. You could code
all the same functionality for Java 8.

Spark is mature, the API is stable, and it isn’t upgraded every
other week. That occurs about twice a year. Also, the project
hasn’t gotten a lot of attention lately, which may give the
impression that it’s been abandoned. (At the time of this writing,
the current version is Spark 2.9.3, released October 2020. The
previous one, 2.9.2, was released July 2020.)

Main Spark concepts

So, let’s dive in and see what happens under the hood. Spark is
designed around the concept of routes. A route is nothing more
than a function that takes an HTTP request and response and
returns content in the form of an that will be sent back
to the client. You already saw that the interface declares
one method, making it perfectly suitable for writing lambda
functions. Although this allows you to write routes in one line of
code, you can also write routes in separate classes, making it
easier to test them. Using a method reference to such a route,
you can still have an efficient listing of all routes in your
application.

ObjectObject

RouteRoute

import static spark.Spark.get;import static spark.Spark.get;
import static spark.Spark.post;import static spark.Spark.post;

https://spark.apache.org/
https://twitter.com/matei_zaharia
https://www.twitter.com/perwendel
https://www.twitter.com/lallemupp
http://sparkjava.com/
https://stackoverflow.com/questions/tagged/spark-java
https://github.com/mthmulders/spark-samples

The method in the controller would return the traditional
“Hello, World” message. The method would let the
user replace “World” for another name by issuing an HTTP
request, as follows, and then retrieve the greeting again:

Using this concise DSL, Spark lets you register routes for all
common HTTP verbs, such as , , , and .

Any useful application would—at some point—deal with user
input. That’s why a has access to the . It’s an
abstraction over the HTTP request that was sent by the client. Of
course, it provides access to cookies, headers, query
parameters, and other forms of user input. Since Spark builds
upon Jetty, the class abstracts away the low-level
details of the class from the Servlet
API. This also means Spark lets you work with request attributes
and session management. I’ll share more on that later.

A route must return a value that is sent back to the client. But
how is that sent over the wire? It’s the responsibility of a
response transformer to translate such an into a string
of characters for the response. A response transformer can, for
example, serialize an object to a JSON structure using the
Google Gson serialization/deserialization library.

A response transformer can transform a response, but what if
you want to work with the request before it reaches the route?

public class JavaMagazineApplication {public class JavaMagazineApplication {
 public static void main(String... args) { public static void main(String... args) {
 var controller = new GreetingController(var controller = new GreetingController(
 get("/hello", controller::greet); get("/hello", controller::greet);
 post("/name", controller::updateName); post("/name", controller::updateName);
 } }
}}

greetgreet

updateNameupdateName

curl --data 'name=Java Magazine' http://localcurl --data 'name=Java Magazine' http://local
curl localhost:4567/hello/simplecurl localhost:4567/hello/simple

getget postpost putput deletedelete

RouteRoute RequestRequest

RequestRequest

HttpServletRequestHttpServletRequest

ObjectObject

ObjectObject

import com.google.gson.Gson;import com.google.gson.Gson;
import com.google.gson.GsonBuilder;import com.google.gson.GsonBuilder;
import spark.ResponseTransformer;import spark.ResponseTransformer;

public class JsonTransformer implements Respopublic class JsonTransformer implements Respo

 private final Gson gson = new GsonBuilder(private final Gson gson = new GsonBuilder(

 @Override @Override
 public String render(Object model) { public String render(Object model) {
 return gson.toJson(model); return gson.toJson(model);
 } }
}}

https://github.com/google/gson

That’s where filters come into play. Spark invokes your filters
either before or after it runs the request through the route.

Until now, you have seen only static routing, where the request
URI must match exactly the given path (such as).
Fortunately, Spark lets you define routes in a more flexible way.
Let’s revisit the greeting application and make sure the user can
supply a custom name by passing it as a path variable, as
follows:

This lets you customize the greeting.

But how can you implement a when you want to access
path parameters or other client inputs? Spark provides you with
access.

Path parameters are available through the method on
the class. Similarly, query parameters (such as

) are available through the
method on the same class.

What if you wanted to consume JSON data? Of course, it’s also
possible to do that. And just as with producing JSON, it’s not
something that Spark can do out of the box, which gives you the
most flexibility for how you want to do it.

The way I typically do it is twofold. First, I have a factory method
that produces a filter. And second, I configure Spark to run that
before invoking a particular route.

The factory method looks like the following:

/hello/hello

import static spark.Spark.get;import static spark.Spark.get;
import static spark.Spark.post;import static spark.Spark.post;

public class JavaMagazineApplication {public class JavaMagazineApplication {
 public static void main(final String... arg public static void main(final String... arg
 var controller = new GreetingController(var controller = new GreetingController(
 get("/hello/simple/:name", controller::gr get("/hello/simple/:name", controller::gr
 } }
}}

curl localhost:4567/hello/simple/Javacurl localhost:4567/hello/simple/Java

RouteRoute

public Object greet(Request request, Responsepublic Object greet(Request request, Response
 return "Hello, " + request.params("name"); return "Hello, " + request.params("name");
}}

paramsparams

RequestRequest

?name="Java"?name="Java" queryMap()queryMap()

public static Filter forType(final Class<?> tpublic static Filter forType(final Class<?> t
 return (request, response) -> { return (request, response) -> {

To register that method with Spark, I use the following snippet:

Of course, the that I use in the factory
is a constant that can be used to retrieve the object inside a

.

This may be a little more work than throwing an annotation on
top of a method, but it gives you very fine-grained control over
exactly how and when the request body is processed.

It’s also possible to write a little bit more code than this and have
the filter inspect annotations based on the route method. In that
case, there would be only one instance of that filter at runtime,
rather than one instance per route. On the other hand, the filter
would become much more complex by inspecting those
annotations.

Packaging an application for deployment

Running an application from a cozy IDE is all well and good, but
that’s not how to run applications in production. So how would
you package a Spark application? You can choose to package it
for deployment in an existing servlet container or a standalone
app.

Deployment in an existing container. Recall that Spark
includes Jetty. If you want to deploy your application in an
existing servlet container, it wouldn’t make sense to package
Jetty with it. In fact, a bundled Jetty wouldn’t even work, because
its servlet container will not invoke the function written
earlier.

Instead, you should rewrite the application class to implement
the interface, whose method is
the perfect place to declare filters, routes, and response
transformers. That interface’s method is suitable for
cleaning up any resources.

In addition, you must change the build to output a WAR file
rather than a JAR file, and you need to exclude Jetty from the

 var body = gson.fromJson(request.body(), var body = gson.fromJson(request.body(),
 request.attribute(REQUEST_DATA, body); request.attribute(REQUEST_DATA, body);
 }; };
}}

before("/hello/complex", "application/json",before("/hello/complex", "application/json",
 JsonParsingFilter.forType(GreetingInput.c JsonParsingFilter.forType(GreetingInput.c

REQUEST_DATAREQUEST_DATA FilterFilter

RouteRoute

var body = (GreetingInput) request.attributevar body = (GreetingInput) request.attribute

main()main()

SparkApplicationSparkApplication init()init()

destroydestroy

application package. Assuming you’re using Maven, here’s how
you do that.

Deployment in a standalone JAR. There are two options here:
a fat JAR or a slim JAR.

The fat JAR approach bundles all classes, resources, and third-
party dependencies into a single JAR file. This is the approach
that Spring Boot takes, for example. It can result in big fat JAR
files, especially as your dependencies grow.

But in the container era, it makes sense to consider the slim JAR
approach. In this approach, you build a traditional JAR file with
only the classes and resources of your own application. For
packaging, copy all third-party dependencies into a folder close
to the JAR file, such as , and add a line in the JAR’s
manifest file that tells the JVM to add all dependencies to the
classpath and resolve them from that folder, as follows:

<packaging>war</packaging><packaging>war</packaging>

<dependencies><dependencies>
 <dependency> <dependency>
 <groupId>com.sparkjava</groupId> <groupId>com.sparkjava</groupId>
 <artifactId>spark-core</artifactId> <artifactId>spark-core</artifactId>
 <version>2.9.3</version> <version>2.9.3</version>
 <exclusions> <exclusions>
 <!-- remove Jetty from the packaged app <!-- remove Jetty from the packaged app
 <exclusion> <exclusion>
 <groupId>org.eclipse.jetty</groupId> <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-server</artifactId> <artifactId>jetty-server</artifactId>
 </exclusion> </exclusion>
 <exclusion> <exclusion>
 <groupId>org.eclipse.jetty</groupId> <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-webapp</artifactId> <artifactId>jetty-webapp</artifactId>
 </exclusion> </exclusion>
 <exclusion> <exclusion>
 <groupId>org.eclipse.jetty.websocket< <groupId>org.eclipse.jetty.websocket<
 <artifactId>websocket-server</artifac <artifactId>websocket-server</artifac
 </exclusion> </exclusion>
 <exclusion> <exclusion>
 <groupId>org.eclipse.jetty.websocket< <groupId>org.eclipse.jetty.websocket<
 <artifactId>websocket-servlet</artifa <artifactId>websocket-servlet</artifa
 </exclusion> </exclusion>
 </exclusions> </exclusions>
 </dependency> </dependency>
</dependencies></dependencies>

lib/lib/

lib/lib/

<plugin><plugin>
 <groupId>org.apache.maven.plugins</groupId> <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId> <artifactId>maven-jar-plugin</artifactId>
 <version>3.0.2</version> <version>3.0.2</version>
 <configuration> <configuration>
 <archive> <archive>
 <manifest> <manifest>
 <addClasspath>true</addClasspath> <addClasspath>true</addClasspath>
 <classpathPrefix>lib/</classpathPrefi <classpathPrefix>lib/</classpathPrefi
 <mainClass>it.mulders.spark.JavaMagaz <mainClass>it.mulders.spark.JavaMagaz

Why is this relevant in the container era? Consider the following
snippet for a Dockerfile:

This approach leverages the layered file system that Docker
uses. The third-party components likely don’t change as often as
the application. By putting those files in a subfolder and writing
them at once into one layer of the Docker file system, you let the
container engine reuse that layer every time you build the
application. The final layer of the Docker container, with the
application in it, may change many times, but it’s small: maybe a
couple of KB. That means the container can be built quickly and
deployed quickly, which is definitely a win.

Starting fast and staying small

You can expect the size of a packaged Spark application to be
small. And indeed, a packaged Spark application “weighs” just
around 4 MB. But this also benefits the startup time and memory
usage of applications. Table 1 compares Spark with some other
frameworks.

Table 1. Comparison of Spark and other frameworks

 </manifest> </manifest>
 </archive> </archive>
 </configuration> </configuration>
</plugin></plugin>
<plugin><plugin>
 <groupId>org.apache.maven.plugins</groupId> <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifa <artifactId>maven-dependency-plugin</artifa
 <version>3.1.2</version> <version>3.1.2</version>
 <configuration> <configuration>
 <overWriteReleases>false</overWriteReleas <overWriteReleases>false</overWriteReleas
 <includeScope>runtime</includeScope> <includeScope>runtime</includeScope>
 <outputDirectory>${project.build.director <outputDirectory>${project.build.director
 </configuration> </configuration>
 <executions> <executions>
 <execution> <execution>
 <phase>package</phase> <phase>package</phase>
 <goals> <goals>
 <goal>copy-dependencies</goal> <goal>copy-dependencies</goal>
 </goals> </goals>
 </execution> </execution>
 </executions> </executions>
</plugin></plugin>

Add Maven dependencies (not shaded into the# Add Maven dependencies (not shaded into the
ADD target/lib /opt/my-application/libADD target/lib /opt/my-application/lib
Add the service itself# Add the service itself
ADD target/my-application.jar /opt/my-applicaADD target/my-application.jar /opt/my-applica

https://docs.docker.com/engine/reference/builder/
https://www.docker.com/

Table 1. Comparison of Spark and other frameworks

* The Micronaut app was generated using micronaut.io/launch/ with Micronaut 2.3.1.

** The Spring Boot app was generated using start.spring.io with Spring Boot 2.4.2.

I measured those numbers on a 2018 MacBook Pro. For the
startup time, I took the output from the logging each application
generates. I measured memory usage using the resident set
output from the command-line tool. I averaged all numbers
over five measurements.

I haven’t used GraalVM to create native executables for those
frameworks that support it. Even though there is a lot in this
naive test setup that you could debate, you can see that the
minimalistic approach Spark takes pays off. Having an extremely
short startup time and low memory usage makes Spark an
interesting choice for environments that demand low resource
usage or high throughput.

I have employed Spark in some performance-critical
environments for that reason, and I measured response times on
a REST endpoint that hardly exceeded the time to perform
necessary database queries; the overhead of the web
framework was negligible.

Spark and REST

So far, I’ve covered applications with an HTTP interface,
assuming that it would be JSON that you send and receive over
the wire. But Spark can do more. You can add a template engine
of your choice and start rendering full web pages straight from
Spark. There are many choices, including (but not limited to)
FreeMarker, Handlebars, Thymeleaf, and Velocity. Those
engines are separate dependencies that you would need to add
to your application.

As an example, let’s look at embedding Thymeleaf. After adding
the appropriate dependencies, you can update your route
definitions as follows:

psps

import static spark.Spark.get;import static spark.Spark.get;
import static spark.Spark.post;import static spark.Spark.post;

public class JavaMagazineApplication {public class JavaMagazineApplication {
 public static void main(final String... arg public static void main(final String... arg
 var controller = new GreetingController(var controller = new GreetingController(
 var thymeleaf = new ThymeleafTemplateEngi var thymeleaf = new ThymeleafTemplateEngi
 get("/hello/html/:name", controller::gree get("/hello/html/:name", controller::gree
 } }
}}

https://micronaut.io/launch/
https://start.spring.io/
https://freemarker.apache.org/
https://handlebarsjs.com/
https://www.thymeleaf.org/
https://velocity.apache.org/

This requires you to update the controller a little bit as well.
Rather than returning text to display, you must return a

 object.

You also need to write a view using Thymeleaf.

It’s beyond the scope of this article to explain all the bits and
pieces of Thymeleaf. For now, note that the text inside the
tag will be rendered by the test application using the key
from the model.

Conclusion

As mentioned above, the code samples are available on my
GitHub and require Java 11 to run.

Spark isn’t a complete toolbox, and it doesn’t pretend to be.
Rather, it should be one of the tools inside your toolbox, and you
as a developer get to find the other tools to complete your
toolbox.

ModelAndViewModelAndView

import spark.ModelAndView;import spark.ModelAndView;
import spark.Request;import spark.Request;
import spark.Response;import spark.Response;

import java.util.Map;import java.util.Map;

public class GreetingController {public class GreetingController {
 public Object greet(Request request, Respon public Object greet(Request request, Respon
 var model = Map.of("name", request.params var model = Map.of("name", request.params
 return new ModelAndView(model, "views/wel return new ModelAndView(model, "views/wel
 } }
}}

<!DOCTYPE html><!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"><html xmlns:th="http://www.thymeleaf.org">

<head><head>
 <title>Simple Spark web application</title> <title>Simple Spark web application</title>
</head></head>

<body><body>

<div><div>
 <h1 th:text="'Welcome to Spark, ' + ${name} <h1 th:text="'Welcome to Spark, ' + ${name}
 Welcome to Spark, unknown Welcome to Spark, unknown
 </h1> </h1>
</div></div>

</body></body>

</html></html>

h1h1

namename

https://github.com/mthmulders/spark-samples

Maarten Mulders
Maarten Mulders (@mthmulders) is an
Oracle Groundbreaker Ambassador and a
passionate architect, senior developer, and
trainer at Info Support. He is focused on
"building the right thing" and "building the
thing right." He prefers lean and elegant
solutions, and he loves to share new ideas
and knowledge. Outside of work, Mulders
appreciates crafting, eating good food,
photography, and music, in no particular
order.

Share this Page

I’ve used Spark in a few projects that had specific requirements
for response times. In those situations, its size and the fact that
Spark does not heavily use reflection make it an interesting
choice.

Spark code is very readable and lends itself well for extensions
that the Spark framework doesn’t cover.

On the other hand, if your main concern is to deliver features
quickly, having to wire tools and components together may, in
fact, slow you down. In such scenarios, having a toolbox that is
prefilled with solid tools may enable you to deliver features
faster.

Dig deeper

Building microservices with Micronaut

Helidon: A simple cloud native framework

How to test Java microservices with Pact

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/maarten-mulders
https://blogs.oracle.com/javamagazine/maarten-mulders
https://twitter.com/mthmulders
https://www.infosupport.com/
https://blogs.oracle.com/javamagazine/building-microservices-with-micronaut
https://blogs.oracle.com/javamagazine/helidon-a-simple-cloud-native-framework
https://blogs.oracle.com/javamagazine/how-to-test-java-microservices-with-pact
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

