
TESTING

Refactoring Java, Part 2:
Stabilizing your legacy code and
technical debt
Pin-down tests are the key to
stabilizing your legacy Java code.

by Mohamed Taman

October 23, 2020

Refactoring is your code improvement process, and the goal is
to improve quality and encourage the modification of your
software product. Refactoring makes the code simpler: You have
fewer code lines than you began with. Fewer lines of code
means fewer potential bugs.

To ensure that refactoring is taking place to enhance your code
and make it simpler, you need to have rigorous testing, which is
the refactoring foundation. Without well-defined test cases that
verify your code behavior’s correctness, you cannot be sure that
you have not altered the code’s external action. The refactoring
process is about changing the internal structure of your code
without affecting its external behavior.

The first article in this series, “Refactoring Java, Part 1: Driving
agile development with test-driven development,” introduced the
Roman Numerals Kata, and I alternated between writing new
code and then refactoring that code.

This second article and the third (final) article will focus on
refactoring debt-ridden technical legacy code to improve its
agility. You will practice refactoring to remove technical debt for
existing legacy code that simulates a real-world scenario. To do
that, you will use the Gilded Rose Refactoring Kata, which was
written and posted to GitHub by Emily Bache.

In her blog post about the Gilded Rose kata, Bache describes it
as follows:

“The basic plot of the Kata is that you’ve just been
hired to look after an existing system, and the
customer wants a new feature. Having a look at the

Refactoring Java, Part 2:
Stabilizing your legacy code
and technical debt

Why is technical debt a
problem?

Stabilizing that messy legacy
code

Step A2-2: Add the
requirements to the project

Step A2-3: Add the first pin-
down tests

Step A2-4: Add more pin-down
tests

Step A2-5: Refactor the pin-
down tests

Step A2-6: Refactor by
changing the method signature

Step A2-7: Create pin-down
tests for the remaining
requirements

Step A2-8: Pin down a test
based on what was discovered
by code coverage

Step A2-9: Pin down branch
coverage

Step A2-10: Final pin-down
tests for full branch coverage

Conclusion

Dig deeper

SubscribeTopics DownloadsArchives

Menu

https://blogs.oracle.com/javamagazine
https://blogs.oracle.com/javamagazine/testing-3
https://blogs.oracle.com/javamagazine/refactoring-java-part-1-driving-agile-development-with-test-driven-development
https://github.com/emilybache/GildedRose-Refactoring-Kata
http://coding-is-like-cooking.info/2013/03/writing-good-tests-for-the-gilded-rose-kata/
https://go.oracle.com/LP=28277?elqCampaignId=38358&nsl=jvm
https://blogs.oracle.com/javamagazine/issue-archives
https://www.oracle.com/

code, you can see you’re going to want to refactor it a
little before adding the new feature, and before you do
that, you’re going to want some automated tests.”

Following that kata, let’s start with legacy code that is full of
technical debt, and then refactor it to the point that it will be trivial
to add a new feature to the code. During that process, you’ll pay
off the technical debt and regain agility.

In this article, your first task is to stabilize the legacy code by
writing pin-down tests that ensure you understand the legacy
code. This helps ensure that future refactoring will not alter the
code’s external behavior.

First, though, what’s the problem with technical debt?

Why is technical debt a problem?

Technical debt is code with problems that can be improved with
refactoring. The technical debt metaphor is that it’s like monetary
debt. When you borrow money to purchase something, you must
pay back more money than you borrowed; that is, you pay back
the original sum and interest.

When someone writes low-quality code or writes code without
first writing automated tests, the organization incurs technical
debt, and someone has to pay interest, at some point, for the
debt that’s due.

The organization’s interest payments aren’t necessarily in
money. The biggest cost is the loss of technical agility, since you
can’t update or otherwise change the behavior of the software as
quickly as needed. And less technical agility means the
organization has less business agility: The organization can’t
meet stakeholders’ needs at the desired speed.

Therefore, the goal is to refactor debt-ridden code. You’re taking
the time to fix the code to improve technical and business agility.

Now let’s start playing with the Gilded Rose kata’s code and see
how to stabilize the code, while preparing to add functionality
quickly in an agile way.

Stabilizing that messy legacy code

One huge main problem with legacy code is that someone else
wrote it. Many times, legacy code is a mess and poorly
documented, and you simply don’t understand it. You can’t
safely add additional features before making sure you
understand the code; you have to be confident enough to make
those changes without breaking anything. Let’s see how to gain
that confidence.

First, set up the environment. The solution code for this kata is at
my GitHub repository. You can clone it as follows:

https://github.com/mohamed-taman/Agile-Software-Dev-Refactoring

The solution for this article is under the Gilded Rose module.
You have two options to work with the Java code for this article:

All required software is listed in the first article, “Refactoring
Java, Part 1: Driving agile development with test-driven
development.” I am using IntelliJ IDEA, as I did in the first article,
but of course you don’t need to use that particular IDE. The step
names begin with “A2” to indicate that this is the second article
in the series.

Step A2-1: Set up the kata. To remove technical debt using the
Gilded Rose kata, load the kata’s code as follows:

1. Go to the Gilded Rose GitHub page and either clone the
repository or download the zip file. (I downloaded the zip file
as shown in Figure 1.) Then, in your file browser, unzip the
file.

Figure 1. Downloading the Gilded Rose kata

2. Second, fire up IntelliJ IDEA, and at the welcome screen,
click the link. On the next panel, on the left
side, select , and click . The project name is

. Open and fill in the following: The
 is , while the is

. Click . In the
bottom right corner of IntelliJ’s screen, click

.

3. In the IntelliJ project browser, open the
project, open the folder, and open the and
folders, as shown in Figure 2.

~$ git clone https://github.com/mohamed-~$ git clone https://github.com/mohamed-

taman/Agile-Software-Dev-Refactoring.gittaman/Agile-Software-Dev-Refactoring.git

If you would like to follow along with me, please do. Simply
follow the article’s steps.



But if you would like to navigate the code, this article is
divided into steps, and each step has a git commit for each
test-driven development (TDD) red-green-refactor
change. When you navigate code commits, you can notice
the differences between each step and the refactoring
changes toward the final kata requirements.



new projectnew project

MavenMaven nextnext

Gilded RoseGilded Rose advancedadvanced

artifact Idartifact Id gilded-rosegilded-rose group Idgroup Id

com.siriusxi.javamag.katacom.siriusxi.javamag.kata finishfinish

enable auto-importenable auto-import

Gilded RoseGilded Rose

srcsrc mainmain testtest

https://blogs.oracle.com/javamagazine/refactoring-java-part-1-driving-agile-development-with-test-driven-development
https://github.com/emilybache/GildedRose-Refactoring-Kata

Figure 2. The Gilded Rose kata in IntelliJ IDEA

4. Navigate back to your file browser and change the view to
. In the folder that you

unzipped, look for the subfolder.

a. Click the src , then click the folder, and
then click the folder. Drag and drop to the

 folder in IntelliJ. Click to
confirm that’s what you want.

b. Go back to the folder, and click and .
Drag and drop to the
folder in IntelliJ. Click to confirm.

5. In IntelliJ’s project browser, open the
package and double-click to open the

 file. Notice all the red; that’s
because fresh out of its GitHub repository, Gilded Rose isn’t
set up for IntelliJ. Let’s fix that now.

a. On line 9, put the cursor over , and press
. Select

. All the red
should be gone.

b. There is a method. That’s a JUnit task, so let’s
run the test. Right-click the source
file and select from the
menu. There’s red; the has a test that
failed.

c. This red failed test is good; it is the first step of the red,
green, refactor TDD three-step dance. This test fails
because the expected value is , while the actual
returned value is . This test is broken on purpose to
make sure it’s red so you can see if everything is set up
properly.

d. Change the string at line 14 to . Rerun the test; it
passes, and everything is now green.

Do a small refactoring. You’ve seen red and you’ve seen
green. Now, let’s improve the test code by renaming the
test method to a name that better describes what this test does.
This test proves that the test framework is up and running.
Rename the test code to , and rerun
the test to make sure nothing broke. Everything should still be all

column viewcolumn view Gilded RoseGilded Rose

javajava

folderfolder mainmain

javajava comcom

src > main > javasrc > main > java okayokay

srcsrc testtest javajava

comcom src -> test -> javasrc -> test -> java

okayokay

com.gildedrosecom.gildedrose

GildedRoseTest.javaGildedRoseTest.java

@Test@Test

Option+EnterOption+Enter

add JUnit5.4 to the classpathadd JUnit5.4 to the classpath

foo()foo()

GildedRoseTestGildedRoseTest

run 'GildedRosetest'run 'GildedRosetest'

GildedRoseTestGildedRoseTest

fixmefixme

foofoo

foofoo

foo()foo()

junitFrameworkWorks()junitFrameworkWorks()

green, as shown in Figure 3. Then, you are ready to move on to
the rest of the kata.

Figure 3. Green Gilded Rose tests after the first simple refactoring

Let’s find the requirements for the Gilded Rose and integrate
them into the project to make the documentation more
accessible and convenient.

Step A2-2: Add the requirements to the project

To add the requirements to the project for ease of access, do the
following:

1. Go back to your file browser and look for a file called
. Drag and drop it to

 in your project browser.

2. Click to confirm.

3. Open that file to read it.

Wow—those requirements are confusing! Some items are
difficult to understand, and some appear to contradict each
other. This is intentional, because the Gilded Rose kata is
designed to be a realistic simulation of a real-world coding
problem.

As you scroll down, remember that your goal is to add a single
new feature to the Gilded Rose. Let’s look at the code itself.
Under , open the
package, and look at the file.

Read the source code, and notice the following:

GildedRoseRequirements.txtGildedRoseRequirements.txt

Gilded RoseGilded Rose

okayokay

src -> main -> javasrc -> main -> java com.gildedrosecom.gildedrose

GildedRose.javaGildedRose.java

The method called has many lines of
code—more code than can fit on one screen. It’s a very
long method. So, there’s a code smell right there.

 updateQuality()updateQuality()

There are many s, s, s, and s. There’s a lot
of program logic that looks confusing and is hard to read.

 ifif elseelse notnot andand

There are some repeated hardcoded numbers such as 50.
There’s a lot of confusing business logic, which implies



Given the requirements document, which was confusing enough,
you might have thought it would be easy to add the new feature,
but now I suspect you are not so sure. This type of situation is
common in the real world when you work with legacy source
code. Someone else wrote the code, it’s a mess, and you don't
understand it. Again, this is where this kata is a realistic
simulation of a real-world coding problem.

The test-refactor-add methodology for working with legacy
code. To be able to add a new feature to this legacy source
code, here’s the methodology you’ll use:

1. Add pin-down tests. Add tests: lots of tests. Those tests
will serve two functions. They will help you understand the
legacy code’s external behavior, and they will also pin down
the code’s behavior so that if something breaks, you’ll know
it.

2. Refactor. Improve the legacy code by simplifying it. The
pin-down tests will ensure that you don’t break anything
along the way.

3. Add the new feature. Given the simplified code, it will be
much easier to add the new feature. You’ll create that new
feature using TDD.

Before you can add the first pin-down test, examine the test
code that the kata author provided. Open the file called

 and notice how it works:

You will follow the same pattern as you write the system pin-
down tests.

Step A2-3: Add the first pin-down tests

Go back to the requirements file again and look at the
requirements. The first requirement says this:

“All items have a value, which denotes the
number of days we sell the item. All items have a

 value that indicates how valuable the item
is, and at the end of each day, our system lowers both
values for every item.”

Write a pin-down test for that behavior. First, go back to the
 class; at line 16 press and add the

 method, as follows:

technical debt, because the application may be hard to
update.

GildedRoseTestGildedRoseTest

Line 11 creates an array of items.

Line 12 creates an instance of the
application passing in that array of items.

 GildedRoseGildedRose

Line 13 calls . updateQuality()updateQuality()

Line 14 asserts the current state of the items in the array.

SellInSellIn

QualityQuality

GildedRoseTestGildedRoseTest EnterEnter

systemLowersValues()systemLowersValues()

The method tests and
 as they decrease in value, and this is why it’s called

. I’ll write the rest of the test following
the same pattern of the first method provided with the test class.

I have created an array of items, and I will assign some values
greater than zero. is equal to 15, and is 25,
so you can distinguish the two.

I have created an instance of the Gilded Rose application with
those items. I called the method, and I
made a couple of assertions based on what I think the behavior
should be:

Rerun the tests to see what happens. As shown in Figure 4, the
tests are all green. This proves something about the behavior of
the system: When I pass an item with a value of 15 and
a value of 25, and I call as in line
21, the value decreases by one and the value
decreases by one.

Figure 4. Running the first pin-down test

Step A2-4: Add more pin-down tests

@Test@Test
 void systemLowersValues() { void systemLowersValues() {
 Item[] items = new Item[] { new Item(Item[] items = new Item[] { new Item(
 GildedRose app = new GildedRose(items GildedRose app = new GildedRose(items
 app.updateQuality(); app.updateQuality();
 assertEquals(14, app.items[0].sellIn) assertEquals(14, app.items[0].sellIn)
 assertEquals(24, app.items[0].quality assertEquals(24, app.items[0].quality
 } }

systemLowersValues()systemLowersValues() sellInsellIn

QualityQuality

systemLowersValuessystemLowersValues

SellInSellIn QualityQuality

updateQuality()updateQuality()

The first assertion is about the value. I think
 will go down by one; let’s see if that’s what

happens.

 SellInSellIn
SellInSellIn

The other assertion is about the value. I expect
the value to decrease by one. Let’s find out if it
does.

 QualityQuality
QualityQuality

sellInsellIn

QualityQuality updateQuality()updateQuality()

SellInSellIn QualityQuality

Pin down a second behavior. Let’s look at the requirements
and add another pin-down test. At line 18, the document says
this:

“Once the sell-by date has passed, degrades
twice as fast.”

Add a pin-down test to confirm that behavior. At line 24, press
 twice and add a method called

. This time, just copy and
paste from the previous tests, so you don’t have to type all the
code in by hand.

The requirement says that if the item can no longer be sold,
which is the same as saying is zero, then
degrades twice as fast. So, you want something with a
value of zero and a value of, say, 17, which is greater
than zero. To confirm the expected behavior, you’d expect

 to decrease from 17 to 15, indicating it degraded twice
as fast as before. Here is the final method:

Run the test. It’s green. You have successfully pinned downed
another behavior.

Pin down a third behavior. The next item in the requirements
document, at line 19, says the following:

The quality of an item is never negative.

Let’s add a pin-down test for that. At line 32, press twice
and add a method called by
copying and pasting. Start with a of zero, and see if it
goes negative (which is wrong) or if it stays at zero (which is
desired). Here’s the method:

Run the test to see if the behavior is correct. Everything is green,
so that behavior has been pinned down as well. And now you’ve
gotten the hang of it, right? Let’s tackle a different problem, that
of technical debt.

QualityQuality

EnterEnter

qualityDegradesTwiceAsFast()qualityDegradesTwiceAsFast()

SellInSellIn QualityQuality

SellInSellIn

QualityQuality

QualityQuality

@Test@Test
 void qualityDegradesTwiceAsFast() { void qualityDegradesTwiceAsFast() {
 Item[] items = new Item[] { new Item(Item[] items = new Item[] { new Item(
 GildedRose app = new GildedRose(items GildedRose app = new GildedRose(items
 app.updateQuality(); app.updateQuality();
 assertEquals(15, app.items[0].quality assertEquals(15, app.items[0].quality
 } }

EnterEnter

qualityIsNeverNegative()qualityIsNeverNegative()

QualityQuality

@Test@Test
 void qualityIsNeverNegative() { void qualityIsNeverNegative() {
 Item[] items = new Item[] { new Item(Item[] items = new Item[] { new Item(
 GildedRose app = new GildedRose(items GildedRose app = new GildedRose(items
 app.updateQuality(); app.updateQuality();
 assertEquals(0, app.items[0].quality) assertEquals(0, app.items[0].quality)
 } }

Step A2-5: Refactor the pin-down tests

Previously, when you added the new pin-down tests, you copied
and pasted the code. That’s a clue that these tests injected new
technical debt, because of the DRY principle: “Don’t repeat
yourself.” The last test method has lines like these:

Those lines are repeated over and over in the tests, along with
phrases such as . That’s
cumbersome, prone to errors, and difficult to maintain. So, let’s
simplify as follows. Scroll up to the top of the file. Inside the
method , at line 10, press .

Design the refactoring before writing the code for it. Look for a
method that returns an item; call this , as
shown below. It will take two inputs: a and a Q :

Of course, that method doesn’t exist yet, so it shows up in red in
the editor. Have IntelliJ create the method. It’s going to return an
item: The first input is an int, to be renamed as , and the
second input is also an int, and the name will be Q .
Finally, cut the repeated lines 12 through 14, and paste this
repeated code into the new method so it looks like this:

Notice line 13: There’s some red. That’s a pre-execution
compiler error, so change to . Run
the tests and make sure nothing broke. Everything is still green.

There’s one little thing to adjust: At line 12, there’s a blank line.
Delete that blank line and rerun the tests. It might seem
unnecessary to rerun tests after merely deleting a blank line—
but the real point is to practice the movements repeatedly so
when you get to real code, it’ll be a habit to always rerun tests
whenever the code changes.

Item[] items = new Item[] {new Item("foo", 0,Item[] items = new Item[] {new Item("foo", 0,
GildedRose app = new GildedRose(items);GildedRose app = new GildedRose(items);
app.updateQuality();app.updateQuality();

app.items[0].somethingapp.items[0].something

junitFrameworkWorks()junitFrameworkWorks() EnterEnter

createAndUpdate()createAndUpdate()

sellInsellIn ualityuality

......
Item item = createAndUpdate(0, 0);Item item = createAndUpdate(0, 0);
......

sellInsellIn

ualityuality

private Item createAndUpdate(int sellIn, int private Item createAndUpdate(int sellIn, int
 Item[] items = new Item[] {new Item("foo" Item[] items = new Item[] {new Item("foo"
 GildedRose app = new GildedRose(items); GildedRose app = new GildedRose(items);
 app.updateQuality(); app.updateQuality();
 return app.items[0]; return app.items[0];
}}

app.items[0]app.items[0] item.nameitem.name

Now, another thing to refactor here is the location of this new
private method. Its current location is between two of the tests;
move it to the top of the file, so all the tests are grouped. Do this
by cutting the method and pasting it at line 9. Rerun the tests to
make sure nothing broke. Everything is still green, so you can
continue.

Now, make these same changes to the rest of the test methods.
After each method, rerun the test, and if it’s green, move to the
next. At the end of the process, all the tests should be green,
and the test code will be much easier to read and maintain.

Create a pin-down test for the next requirement. Look back
at the requirements document to find more pin-down tests to
create. The next is at line 20, and it says this:

“Aged Brie increases in quality the older it gets.”

Add a test for that behavior, and follow the pattern from previous
pin-down tests, for example:

Run the test and see if it’s green. Uh oh: It’s red. So open it, and
inspect the test. It looks like even went down by one,
as shown in Figure 5.

Figure 5. The test for aged Brie failed.

That’s not the expected behavior, and you might know what went
wrong. You created a regular item instead of an item of type

.

Step A2-6: Refactor by changing the method
signature

Go back to the method and modify it to
allow you to change different products. As you can see, currently
it creates an item with the name instead of . Fix
this by doing a small refactoring:

1. Right-click the method. Select
 and .

@Test@Test
 void agedBrieIncreasesInQuality() { void agedBrieIncreasesInQuality() {
 Item item = createAndUpdate(15, 25); Item item = createAndUpdate(15, 25);
 assertEquals(26, item.quality); assertEquals(26, item.quality);
 } }

QualityQuality

Aged BrieAged Brie

createAndUpdate()createAndUpdate()

foofoo Aged BrieAged Brie

createAndUpdate()createAndUpdate()

RefactorRefactor Change SignatureChange Signature

2. Click and notice that the of the new parameter
is a and the name of the variable is , which is
the item name. The default value will be , and in this way,
IntelliJ will update all existing code with the new parameter.
Press there.

3. You want this to be the first parameter in the method, so
move it up to the top and click . Then it is
refactored for you.

The IDE added the new parameter in the method signature, and
then it updated the rest of the code. This is one of the reasons I
like to let IntelliJ do the refactorings; for many of the refactorings,
IntelliJ automates the process and updates all the code to
ensure that the updated code works correctly.

Notice something else at line 10: The code is still using as
the name of the item. Instead of the hardcoded string , the
item should be the input parameter . Go back down to the
new test for aged Brie. Change the of the item type to

, run the test, and see if it’s green. Yes; it is! This
pins down another required behavior of the legacy system:
When an item has the name , its quality goes up
every day.

This step introduced a new refactoring type called a change
signature. Use it to change a method by adding or removing its
input parameters or its return type.

Step A2-7: Create pin-down tests for the remaining
requirements

Based on the requirements document, add additional pin-down
tests, which you can see on GitHub. Do the same before
continuing so that you can practice more.

Discover more behaviors with code coverage tools. Although
you have created many pin-down tests to cover all the
documented requirements, perhaps you are not sure if all the
tests cover all the requirements. Maybe there’s something else
that needs to be protected that you don't know about.

To identify any missing requirements, you can use code
coverage tools to pin down the external behavior of untouched
lines of code and construct new tests to reach them. To do this,
run the Gilded Rose test using IntelliJ’s coverage tools; you
should find comparable features in other development
environments.

1. In the right corner of the IntelliJ window, click the icon that
looks like Figure 6, which is for

. A code coverage summary
panel pops up, showing the tests’ code coverage results.

2. Double-click the package, and see the
results for the two production code classes. The

plusplus typetype

StringString namename

foofoo

EnterEnter

RefactorRefactor

foofoo

foofoo

namename

namename

"Aged Brie""Aged Brie"

"Aged Brie""Aged Brie"

Run with code coverageRun with code coverage

com.gildedrosecom.gildedrose

https://github.com/mohamed-taman/Agile-Software-Dev-Refactoring/blob/d099f5e26fd78f4b851494e59a63c75d9f14193d/Gilded%20Rose/src/test/java/com/gildedrose/GildedRoseTest.java#L46-L86

 class has 93% code coverage, and has
83% code coverage, as shown in Figure 7.

Figure 6. The code-coverage icon.

Figure 7. Code coverage panel

You haven’t looked at the class yet, so do that now.
In the source code window’s left side, notice the green marks
from lines 11–15. Those indicate that the tests have touched
these lines of code. But at line 19, you can see a red marker, as
shown in Figure 8. That indicates the tests have not touched
this line of code.

Figure 8. Class code coverage information showing that line 19 has not been

touched by the tests

Line 19 is a method, which is overriding the
default method. Let’s make a judgment call here that it’s not
necessary to write a test that executes this code line.

Going back to the source code, the good
news is that there are many green markings on the left side,
which means the tests have touched most of the code. It looks
like there are only two lines of code, 55 and 56, that have not
been touched yet, as shown in Figure 9.

GildedRoseGildedRose itemitem

Item.javaItem.java

toString()toString()

GildedRose.javaGildedRose.java

Figure 9. GildedRose class code coverage showing lines 55 and 56 have not

been touched by the tests

Close the coverage summary panel and look at these lines of
code. How do you create a test that touches these code lines?
Look around, and notice the embracing statement at line 43.
You can imply the following unwritten requirement: When the
code encounters an item with a value less than zero
and with the item type , the quality will go up by one.

Step A2-8: Pin down a test based on what was
discovered by code coverage

It’s time to write a pin-down test that reaches lines 55 and 56.
Go back to the class and add the new test,
as follows:

This creates a new item with the name that has a
 of 0 (which should get you into that code at lines 55 and

56) and a of 42. You’d expect the value to
stay 0 and the to increase because the quality of aged
Brie always increases.

Run the test to see what happens. Oh no; the test is red. Why? It
says it expected the to be 0, and the actual value was
-1. It’s apparent now that the actual behavior is that when the

 value is 0 for , still is decreased by
1. At line 90, put a -1 instead of 0.

By the way, this is different from TDD for a new feature, because
the goal here is to understand the legacy code, and that means
determining what it is currently doing—even if that is different
from what is in the requirements document or different from what
you think it should do.

Therefore, this test is technically red. Instead of fixing the legacy
code to change the potentially erroneous behavior of sold-out
aged Brie, write a new pin-down test that verifies that current
behavior, so you can see whether that behavior changes in the
future.

Rerun the tests. Oops; it’s still red. Why? The expected result is
43, and the actual result is 44. The increases by two
instead of by one. Pin down that behavior at line 91 and rerun
the test.

ifif

sellInsellIn

Aged BrieAged Brie

GildedRoseTestGildedRoseTest

@Test@Test
 void agedBrieNeverExpires() { void agedBrieNeverExpires() {
 Item item = createAndUpdate("Aged Bri Item item = createAndUpdate("Aged Bri
 assertEquals(0, item.sellIn); assertEquals(0, item.sellIn);
 assertEquals(43, item.quality); assertEquals(43, item.quality);
 } }

"Aged Brie""Aged Brie"

sellInsellIn

QualityQuality sellInsellIn

QualityQuality

QualityQuality

sellInsellIn Aged BrieAged Brie sellInsellIn

assertEquals(-1, item.sellIn);assertEquals(-1, item.sellIn);

QualityQuality

Everything is green again, so this test pins down that behavior
for aged Brie. Rerun again with code coverage to see if all the
lines of code are covered: Go back to the
source code file. The tests cover lines 55 and 56, and they are
now green, as shown in Figure 10.

Figure 10. All the code in GildedRose is now covered by tests.

Another technique is branch coverage. You are almost done
writing pin-down tests that stabilize the legacy code. You have
used the code coverage tool to ensure the tests cover 100% of
the legacy code lines. But what about branches?

Look at all the / statements in .
What do you think about them? Let me give you my opinion:
They are all marked in green according to code coverage, which
is good, so tests have hit these lines of code, but have they done
so sufficiently? Maybe. Maybe not.

Consider the s that could evaluate to either or .
The pin-down tests may not have evaluated both conditions, and
as such, it’s unclear whether you have hit each of the lines
for both the and the cases. For this reason, the
next task that you should do is to run tests with the branch
coverage tool.

To enable branch coverage in IntelliJ, do the following:

1. Select and then
, as shown in Figure 11.

Figure 11. Editing the run/debug configurations in IntelliJ to enable

branch coverage

2. On the right side, select the tab and
then the option, and then click .

To verify the correct behavior, click
again. Back in , did you notice something
different? You should see that some of the green lines are now
marked dark green (in my case, but it might be a different color
based on your theme). Dark green means that you have
executed this line of code, but you have hit only one of the
or sides of the branch, as shown in Figure 12.

assertEquals(44, item.quality);assertEquals(44, item.quality);

GildedRose.javaGildedRose.java

ifif elseelse GildedRose.javaGildedRose.java

ifif truetrue falsefalse

ifif

truetrue falsefalse

Run/debug configurationRun/debug configuration

Edit ConfigurationsEdit Configurations

Code CoverageCode Coverage

TracingTracing okayokay

Run with CoverageRun with Coverage

GildedRose.javaGildedRose.java

truetrue

falsefalse

Figure 12. GildedRose branch coverage

Clearly, there’s some work to do. The next task is to add pin-
down tests that hit both sides of each of the statements to
ensure that both the and paths are verified.

Step A2-9: Pin down branch coverage

Start with line 25 and think about how to reach that line of code.
Go up to line 12 and think about what it means. I think it means
the following: If the item’s name is “Aged Brie” or “Backstage
pass” and the is less than 50, the quality should
increase. If it is a backstage pass, what you care about is
whether Backstage passes and whether the value is
less than 11, so if it is close to the date of the concert and the
item’s quality is less than 50. Increase the item’s
again, so the will increase by two in that case.

What would it take to reach line 25? Go back to
, and try to construct a test. Here’s an

idea: At the end of line 92, press twice and add this new
test case:

This test case is about backstage passes and their maximum
quality. In the requirements document, it says the maximum
quality is 50. In the code above, you created an item called

 with a value of 10 (which is less
than 11) and a of 48 (which is less than 50). The test
should show that the quality has increased by two, going from 48
to 50. Run the test to see if I indeed understood the behavior
correctly. The test is green, so I nailed it.

Wait; there’s one more thing: To hit the other side of the , both
the and the , you need a backstage pass with a

 of 49, and you want to a test that validates the quality
does not increase beyond 50. Copy the two lines 96 and 97 and

ifif

truetrue falsefalse

QualityQuality

sellInsellIn

QualityQuality

QualityQuality

GildedRoseTest.javaGildedRoseTest.java

EnterEnter

@Test@Test
void backstagePassMaximumQuality() {void backstagePassMaximumQuality() {
 Item item = createAndUpdate("Backstage pass Item item = createAndUpdate("Backstage pass
 assertEquals(50, item.quality); assertEquals(50, item.quality);
}}

Backstage passBackstage pass sellInsellIn

QualityQuality

ifif

truetrue falsefalse

QualityQuality

paste them at line 99. Next, create another test that starts with a
quality of 49, for example:

Rerun the test. It looks like I understood the expected behavior.
Now run the test with branch coverage to see if it hits both sides
of the branch at line 25 in . Yes; that line is
now marked in green, as shown in Figure 13.

Figure 13. The test successfully pinned down both branches at line 25.

Your next step is to add the rest of the pin-down tests and
achieve 100% branch coverage.

Step A2-10: Final pin-down tests for full branch
coverage

If you get stuck, I have added the pin-down tests to reach 100%
coverage in the code repository, as shown in Figure 14, so you
can compare your trials with them.

Figure 14. Full branch coverage achieved in the pin-down tests

Conclusion

You have discovered many steps and techniques for stabilizing
legacy code that has outstanding technical debt—preparing you
to handle inefficiencies and errors introduced due to sloppy and
careless programming.

First, you learned how to create pin-down tests for legacy code
to understand its behavior; you used many techniques to cover
the requirements document. You also used the code coverage
tool to check whether there was any code untouched by the test
cases. And finally, you checked all the code / branches
using a branch coverage tool to ensure 100% test coverage of
the code.

Now, you should be confident enough to start refactoring the
legacy code to make it run better. That’s what will happen in part
3, the final article: You will use refactoring to simplify the legacy

item = createAndUpdate("Backstage passes to aitem = createAndUpdate("Backstage passes to a
assertEquals(50, item.quality);assertEquals(50, item.quality);

GildedRose.javaGildedRose.java

ifif elseelse

https://github.com/mohamed-taman/Agile-Software-Dev-Refactoring/blob/d099f5e26fd78f4b851494e59a63c75d9f14193d/Gilded%20Rose/src/test/java/com/gildedrose/GildedRoseTest.java#L101-L119

Mohamed Taman
Mohamed Taman (@_tamanm) is the CEO
of SiriusXI Innovations and a Chief
Solutions Architect for Effortel
Telecommunications. He is based in
Belgrade, Serbia, and is a Java Champion,
and Oracle Groundbreaker, a JCP member,
and a member of the Adopt-a-Spec
program for Jakarta EE and Adopt-a-JSR
for OpenJDK.

Share this Page

code, remove duplication, and build more reusable objects.
Finally, you’ll see that refactoring complements an agile workflow
by exploring how to add a new feature to the simplified legacy
codebase.

Dig deeper

Refactoring Java, Part 1: Driving agile development with
test-driven development



Test-driven development: Really, it’s a design technique

JUnit 5—A special issue of Java Magazine

Interview with Kent Beck, the parent of JUnit and creator of
TDD



Unit testing your application with JUnit

Simplified test-driven development with Oracle Visual
Builder



Gilded Rose Refactoring Kata by Emily Bache


Facebook


Twitter


LinkedIn


Email

Contact
US Sales: +1.800.633.0738

Global Contacts

Support Directory

Subscribe to Emails

About Us
Careers

Communities

Company Information

Social Responsibility Emails

Downloads and Trials
Java for Developers

Java Runtime Download

Software Downloads

Try Oracle Cloud

News and Events
Acquisitions

Blogs

Events

Newsroom

© Oracle Site Map Terms of Use & Privacy Cookie Preferences Ad Choices

https://blogs.oracle.com/javamagazine/mohamed-taman
https://blogs.oracle.com/javamagazine/mohamed-taman
https://twitter.com/_tamanm
https://blogs.oracle.com/javamagazine/refactoring-java-part-1-driving-agile-development-with-test-driven-development
https://www.infoq.com/articles/test-driven-design-java/
https://blogs.oracle.com/java/junit-5-java-magazine
https://blogs.oracle.com/javamagazine/interview-with-kent-beck
https://www.oracle.com/technical-resources/articles/adf/essentials-part5.html
https://blogs.oracle.com/vbcs/simplified-test-driven-development-with-oracle-visual-builder
https://github.com/emilybache/GildedRose-Refactoring-Kata
https://www.oracle.com/corporate/contact/global.html
https://www.oracle.com/support/contact.html
https://go.oracle.com/subscriptions?l_code=en-us&src1=OW:O:FO
https://www.oracle.com/corporate/careers/
https://community.oracle.com/welcome
https://www.oracle.com/corporate/
https://www.oracle.com/corporate/citizenship/
http://www.oracle.com/technetwork/java/javase/downloads/
https://www.java.com/en/download/
https://www.oracle.com/downloads/
https://www.oracle.com/try-it.html?source=:ow:o:h:sb:&intcmp=:ow:o:h:sb:
https://www.oracle.com/corporate/acquisitions/
https://blogs.oracle.com/
https://www.oracle.com/search/events
https://www.oracle.com/corporate/press/
https://www.facebook.com/Oracle/
https://twitter.com/oracle
https://www.linkedin.com/company/oracle/
http://www.youtube.com/oracle/
https://www.oracle.com/legal/copyright.html
https://www.oracle.com/sitemap.html
https://www.oracle.com/legal/privacy/
http://oracle.com/legal/privacy/privacy-policy.html#advertising
https://www.oracle.com/

